José Antonio Pérez Omil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1301626/publications.pdf

Version: 2024-02-01

48 papers 1,640 citations

236925 25 h-index 289244 40 g-index

50 all docs

50 docs citations

50 times ranked

2118 citing authors

#	Article	IF	Citations
1	Improving the reducibility of CeO ₂ /TiO ₂ by high-temperature redox treatment: the key role of atomically thin CeO ₂ surface layers. Journal of Materials Chemistry A, 2022, 10, 13074-13087.	10.3	5
2	Improving the Activity and Stability of YSZ-Supported Gold Powder Catalyst by Means of Ultrathin, Coherent, Ceria Overlayers. Atomic Scale Structural Insights. ACS Catalysis, 2019, 9, 5157-5170.	11.2	6
3	An atomically efficient, highly stable and redox active Ce0.5Tb0.5Ox (3% mol.)/MgO catalyst for total oxidation of methane. Journal of Materials Chemistry A, 2019, 7, 8993-9003.	10.3	12
4	Improving the Redox Response Stability of Ceria-Zirconia Nanocatalysts under Harsh Temperature Conditions. Chemistry of Materials, 2017, 29, 9340-9350.	6.7	21
5	Highly stable ceria-zirconia-yttria supported Ni catalysts for syngas production by CO 2 reforming of methane. Applied Surface Science, 2017, 426, 864-873.	6.1	46
6	Critical Influence of Redox Pretreatments on the CO Oxidation Activity of BaFeO3â^Î Perovskites: An in-Depth Atomic-Scale Analysis by Aberration-Corrected and in Situ Diffraction Techniques. ACS Catalysis, 2017, 7, 8653-8663.	11.2	13
7	Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State. Langmuir, 2016, 32, 4313-4322.	3.5	10
8	CeO2-modified Au/TiO2 catalysts with outstanding stability under harsh CO oxidation conditions. Applied Catalysis B: Environmental, 2016, 197, 86-94.	20.2	25
9	Critical Influence of Nanofaceting on the Preparation and Performance of Supported Gold Catalysts. ACS Catalysis, 2015, 5, 3504-3513.	11.2	53
10	Ceria-supported Au–CuO and Au–Co 3 O 4 catalysts for CO oxidation: An 18 O/ 16 O isotopic exchange study. Applied Catalysis B: Environmental, 2015, 168-169, 87-97.	20.2	25
11	Speciation-controlled incipient wetness impregnation: A rational synthetic approach to prepare sub-nanosized and highly active ceria–zirconia supported gold catalysts. Journal of Catalysis, 2014, 318, 119-127.	6.2	20
12	Rational design of nanostructured, noble metal free, ceria–zirconia catalysts with outstanding low temperature oxygen storage capacity. Journal of Materials Chemistry A, 2013, 1, 4836.	10.3	42
13	A new approach to the ferritin iron core growth: influence of the H/L ratio on the core shape. Dalton Transactions, 2012, 41, 1320-1324.	3.3	55
14	Imaging Nanostructural Modifications Induced by Electronic Metalâ^'Support Interaction Effects at Au Cerium-Based Oxide Nanointerfaces. ACS Nano, 2012, 6, 6812-6820.	14.6	29
15	The effect of reaction conditions on the apparent deactivation of Ce–Zr mixed oxides for the catalytic wet oxidation of phenol. Catalysis Today, 2012, 180, 25-33.	4.4	25
16	Analysis and application of the theories that rationalize the crystalline structures of fluorite-related rare earth oxides. Catalysis Today, 2012, 180, 161-166.	4.4	0
17	A novel procedure for accurate estimations of the lattice parameter of supported nanoparticles from the analysis of plan view HREM images: Application to the structural investigation of Pd/CeO2 catalysts. Catalysis Today, 2012, 180, 174-183.	4.4	11
18	Advanced Electron Microscopy Investigation of Ceriaâ€"Zirconiaâ€Based Catalysts. ChemCatChem, 2011, 3, 1015-1027.	3.7	16

#	Article	IF	Citations
19	Chemical Imaging at Atomic Resolution as a Technique To Refine the Local Structure of Nanocrystals. Angewandte Chemie - International Edition, 2011, 50, 868-872.	13.8	27
20	Contributions of Electron Microscopy to Understanding CO Adsorption on Powder Au/Ceria–Zirconia Catalysts. Chemistry - A European Journal, 2010, 16, 9536-9543.	3.3	16
21	Bridging the Gap between CO Adsorption Studies on Gold Model Surfaces and Supported Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 1981-1985.	13.8	35
22	Electron Microscopy Investigations of Nanostructured Ce/Mn Oxides for Catalytic Wet Oxidation. Journal of Physical Chemistry C, 2010, 114, 8981-8991.	3.1	16
23	Comparative study of the reducibility under H2 and CO of two thermally aged Ce0.62Zr0.38O2 mixed oxide samples. Catalysis Today, 2009, 141, 409-414.	4.4	27
24	First Stage of Thermal Aging under Oxidizing Conditions of a Ce _{0.62} Zr _{0.38} O ₂ Mixed Oxide with an Ordered Cationic Sublattice: A Chemical, Nanostructural, and Nanoanalytical Study. Chemistry of Materials, 2008, 20, 5107-5113.	6.7	37
25	Some recent results on the correlation of nano-structural and redox properties in ceria-zirconia mixed oxides. Journal of Alloys and Compounds, 2008, 451, 521-525.	5.5	32
26	Preparation of Rhodium/Ce <i>_x</i> Pr ₁₋ <i>_x</i> O ₂ Catalysts:  A Nanostructural and Nanoanalytical Investigation of Surface Modifications by Transmission and Scanning-Transmission Electron Microscopy. Journal of Physical Chemistry C, 2008, 112, 5900-5910.	3.1	11
27	3D characterization and metrology of nanostructures by electron tomography. Microscopy and Microanalysis, 2008, 14, 284-285.	0.4	1
28	Structural Surface Investigations of Ceriumâ^'Zirconium Mixed Oxide Nanocrystals with Enhanced Reducibility. Journal of Physical Chemistry C, 2007, 111, 9001-9004.	3.1	36
29	Redox Behavior of Thermally Aged Ceriaâ^'Zirconia Mixed Oxides. Role of Their Surface and Bulk Structural Properties. Chemistry of Materials, 2006, 18, 2750-2757.	6.7	63
30	The role of the carbonaceous deposits in the Catalytic Wet Oxidation (CWO) of phenol. Catalysis Communications, 2006, 7, 639-643.	3.3	34
31	Some major aspects of the chemical behavior of rare earth oxides: An overview. Journal of Alloys and Compounds, 2006, 408-412, 496-502.	5.5	39
32	TEM Investigation of the Synthesis of Rh/CePrOx Catalysts. Microscopy and Microanalysis, 2006, 12, 760-761.	0.4	1
33	TEM (HREM) and STEM (HAADF/EDS) Study of the Metallic Dispersion in Supported Ruthenium Catalysts. Microscopy and Microanalysis, 2006, 12, 810-811.	0.4	O
34	The effect of Ni in Pd–Ni/(Ce,Zr)O/AlO catalysts used for stoichiometric CO and NO elimination. Part 1: Nanoscopic characterization of the catalysts. Journal of Catalysis, 2005, 235, 251-261.	6.2	44
35	Combined HREM and HAADF Scanning Transmission Electron Microscopy:Â A Powerful Tool for Investigating Structural Changes in Thermally Aged Ceriaâ°'Zirconia Mixed Oxides. Chemistry of Materials, 2005, 17, 4282-4285.	6.7	35
36	Preparation and characterization of CeMnO composites with applications in catalytic wet oxidation processes. Surface and Interface Analysis, 2004, 36, 752-755.	1.8	36

#	Article	IF	CITATIONS
37	Some contributions of electron microscopy to the characterisation of the strong metal–support interaction effect. Catalysis Today, 2003, 77, 385-406.	4.4	181
38	Computer image HRTEM simulation of catalytic nanoclusters on semiconductor gas sensor materials supports. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 91-92, 534-536.	3.5	5
39	Title is missing!. Catalysis Letters, 2001, 76, 131-137.	2.6	27
40	Rare-earth oxides with fluorite-related structures: their systematic investigation using HREM images, image simulations and electron diffraction pattern simulations. Ultramicroscopy, 1999, 80, 19-39.	1.9	25
41	Image simulation and experimental HREM study of the metal dispersion in Rh/CeO2 catalysts. Influence of the reduction/reoxidation conditions. Applied Catalysis B: Environmental, 1998, 16, 127-138.	20.2	50
42	The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy, 1998, 72, 135-164.	1.9	154
43	Reducibility of ceria–lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions. Journal of Alloys and Compounds, 1997, 250, 449-454.	5.5	41
44	Lanthanide salts as alternative corrosion inhibitors. Journal of Alloys and Compounds, 1995, 225, 638-641.	5.5	57
45	Influence of the nature of the metal precursor salt on the redox behaviour of ceria in Rh/CeO2 catalysts. Studies in Surface Science and Catalysis, 1995, 96, 419-429.	1.5	34
46	Study of the reduction/reoxidation cycle in a La/Ce/Tb mixed oxide. Journal of Alloys and Compounds, 1994, 207-208, 196-200.	5.5	16
47	Characterization of silica dispersed lanthana by CO2 adsorption. Journal of Alloys and Compounds, 1994, 207-208, 201-205.	5. 5	5
48	Hydrogen chemisorption on ceria: influence of the oxide surface area and degree of reduction. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3499.	1.7	138