Shinpei Kusaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1301621/publications.pdf Version: 2024-02-01

SHINDEL KUSAKA

#	Article	IF	CITATIONS
1	Design and control of gas diffusion process in a nanoporous soft crystal. Science, 2019, 363, 387-391.	12.6	332
2	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie - International Edition, 2018, 57, 5684-5689.	13.8	161
3	Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers. Journal of the American Chemical Society, 2017, 139, 11576-11583.	13.7	118
4	Cooperative Bond Scission in a Soft Porous Crystal Enables Discriminatory Gate Opening for Ethylene over Ethane. Journal of the American Chemical Society, 2017, 139, 18313-18321.	13.7	72
5	Readily accessible shape-memory effect in a porous interpenetrated coordination network. Science Advances, 2018, 4, eaaq1636.	10.3	61
6	An Open-shell, Luminescent, Two-Dimensional Coordination Polymer with a Honeycomb Lattice and Triangular Organic Radical. Journal of the American Chemical Society, 2021, 143, 4329-4338.	13.7	57
7	Theoretical Insight into Gate-Opening Adsorption Mechanism and Sigmoidal Adsorption Isotherm into Porous Coordination Polymer. Journal of the American Chemical Society, 2018, 140, 13958-13969.	13.7	48
8	Dynamic Topochemical Reaction Tuned by Guest Molecules in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 15742-15746.	13.7	48
9	Switchable gate-opening effect in metal–organic polyhedra assemblies through solution processing. Chemical Science, 2018, 9, 6463-6469.	7.4	40
10	A Convenient Strategy for Designing a Soft Nanospace: An Atomic Exchange in a Ligand with Isostructural Frameworks. Journal of the American Chemical Society, 2015, 137, 15825-15832.	13.7	37
11	Development of a Porous Coordination Polymer with a High Gas Capacity Using a Thiophene-Based Bent Tetracarboxylate Ligand. ACS Applied Materials & Interfaces, 2017, 9, 33455-33460.	8.0	32
12	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 2018, 130, 5786-5791.	2.0	27
13	One-Step Synthesis of an Adaptive Nanographene MOF: Adsorbed Gas-Dependent Geometrical Diversity. Journal of the American Chemical Society, 2019, 141, 15649-15655.	13.7	27
14	Microwaveâ€Assisted Hydrothermal Synthesis of [Al(OH)(1,4â€NDC)] Membranes with Superior Separation Performances. Chemistry - an Asian Journal, 2019, 14, 2072-2076.	3.3	18
15	Creation of MOFs with open metal sites by partial replacement of metal ions with different coordination numbers. Dalton Transactions, 2019, 48, 2545-2548.	3.3	17
16	Finely Controlled Stepwise Engineering of Pore Environments and Mechanistic Elucidation of Water‣table, Flexible 2D Porous Coordination Polymers. Chemistry - A European Journal, 2018, 24, 6412-6417.	3.3	16
17	Generation of thiyl radicals in a zinc(<scp>ii</scp>) porous coordination polymer by light-induced post-synthetic deprotection. Chemical Communications, 2018, 54, 4782-4785.	4.1	14
18	Hysteresis in the gas sorption isotherms of metal–organic cages accompanied by subtle changes in molecular packing. Chemical Communications, 2020, 56, 3689-3692.	4.1	14

Shinpei Kusaka

#	Article	IF	CITATIONS
19	Characteristic Features of CO ₂ and CO Adsorptions to Paddle-Wheel-type Porous Coordination Polymer. Journal of Physical Chemistry C, 2017, 121, 19129-19139.	3.1	13
20	Insights into inorganic buffer layer-assisted <i>in situ</i> fabrication of MOF films with controlled microstructures. CrystEngComm, 2018, 20, 6995-7000.	2.6	13
21	Molecular motion in the nanospace of MOFs upon gas adsorption investigated by <i>in situ</i> Raman spectroscopy. Faraday Discussions, 2021, 225, 70-83.	3.2	8
22	Triplet Carbene with Highly Enhanced Thermal Stability in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 8129-8136.	13.7	8
23	Reversible low-temperature redox activity and selective oxidation catalysis derived from the concerted activation of multiple metal species on Cr and Rh-incorporated ceria catalysts. Physical Chemistry Chemical Physics, 2019, 21, 20868-20877.	2.8	7
24	Direct observation of dimethyl sulfide trapped by MOF proving efficient removal of sulfur impurities. RSC Advances, 2020, 10, 4710-4714.	3.6	7
25	Trapping and Releasing of Oxygen in Liquid by Metal–Organic Framework with Light and Heat. Small, 2021, 17, 2004351.	10.0	6
26	Design of a MOF based on octa-nuclear zinc clusters realizing both thermal stability and structural flexibility. Chemical Communications, 2022, 58, 1139-1142.	4.1	6
27	Fabrication of a Kagoméâ€ŧype MOF Membrane by Seeded Growth on Aminoâ€functionalized Porous Al 2 O 3 Substrate. Chemistry - an Asian Journal, 2021, 16, 2018-2021.	3.3	5
28	Heterobilayer membranes from isostructural metal-organic frameworks for efficient CO2 separation. Microporous and Mesoporous Materials, 2022, 338, 111950.	4.4	4
29	Stabilization of radical active species in a MOF nanospace to exploit unique reaction pathways. Chemical Communications, 2021, 57, 12115-12118.	4.1	1
30	Selective Photochemical Reaction by Fixing Reactant as a MOF Building Block. Chemistry Letters, 2021, 50, 1987-1989.	1.3	0