
Lynda S Ostedgaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1301127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early pathogenesis of cystic fibrosis gallbladder disease in a porcine model. Laboratory Investigation, 2020, 100, 1388-1399.	1.7	12
2	Lack of airway submucosal glands impairs respiratory host defenses. ELife, 2020, 9, .	2.8	26
3	Mucus strands from submucosal glands initiate mucociliary transport of large particles. JCI Insight, 2019, 4, .	2.3	36
4	Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1370-1375.	3.3	31
5	Mucociliary Transport in Healthy and Cystic Fibrosis Pig Airways. Annals of the American Thoracic Society, 2018, 15, S171-S176.	1.5	19
6	Widespread airway distribution and short-term phenotypic correction of cystic fibrosis pigs following aerosol delivery of piggyBac/adenovirus. Nucleic Acids Research, 2018, 46, 9591-9600.	6.5	38
7	Gel-forming mucins form distinct morphologic structures in airways. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6842-6847.	3.3	132
8	Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biology, 2017, 15, e2000779.	2.6	118
9	CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight, 2016, 1, e88728.	2.3	72
10	Relationships among CFTR expression, HCO ₃ ^{â^'} secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5382-5387.	3.3	67
11	Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science, 2016, 351, 503-507.	6.0	254
12	Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 417-426.	2.5	58
13	Acidic pH increases airway surface liquid viscosity in cystic fibrosis. Journal of Clinical Investigation, 2016, 126, 879-891.	3.9	207
14	Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clinical Science, 2015, 128, 131-142.	1.8	64
15	Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Journal of Biological Chemistry, 2015, 290, 14140-14153.	1.6	7
16	Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science, 2014, 345, 818-822.	6.0	332
17	Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. Journal of Clinical Investigation, 2013, 123, 2685-2693.	3.9	109
18	A microRNA network regulates expression and biosynthesis of wild-type and ΔF508 mutant cystic fibrosis transmembrane conductance regulator. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13362-13367.	3.3	111

Lynda S Ostedgaard

#	Article	IF	CITATIONS
19	Human-mouse cystic fibrosis transmembrane conductance regulator (CFTR) chimeras identify regions that partially rescue CFTR-ÂF508 processing and alter its gating defect. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 917-922.	3.3	22
20	Pancreatic and biliary secretion are both altered in cystic fibrosis pigs. American Journal of Physiology - Renal Physiology, 2012, 303, G961-G968.	1.6	36
21	The Δ <i>F508</i> Mutation Causes CFTR Misprocessing and Cystic Fibrosis–Like Disease in Pigs. Science Translational Medicine, 2011, 3, 74ra24.	5.8	178
22	Cystic fibrosis transmembrane conductance regulator with a shortened R domain rescues the intestinal phenotype of <i> CFTR ^{â^'/â''} </i> mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2921-2926.	3.3	15
23	Cystic Fibrosis Pigs Develop Lung Disease and Exhibit Defective Bacterial Eradication at Birth. Science Translational Medicine, 2010, 2, 29ra31.	5.8	416
24	Disruption of the <i>CFTR</i> Gene Produces a Model of Cystic Fibrosis in Newborn Pigs. Science, 2008, 321, 1837-1841.	6.0	686
25	The porcine lung as a potential model for cystic fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L240-L263.	1.3	206
26	Processing and function of CFTR-ΔF508 are species-dependent. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15370-15375.	3.3	105
27	A shortened adeno-associated virus expression cassette for CFTR gene transfer to cystic fibrosis airway epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2952-2957.	3.3	86
28	Curcumin Stimulates Cystic Fibrosis Transmembrane Conductance Regulator Cl– Channel Activity. Journal of Biological Chemistry, 2005, 280, 5221-5226.	1.6	85
29	Methods to study CFTR protein in vitro. Journal of Cystic Fibrosis, 2004, 3, 79-83.	0.3	6
30	Effects of C-terminal deletions on cystic fibrosis transmembrane conductance regulator function in cystic fibrosis airway epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1937-1942.	3.3	59
31	CFTR with a partially deleted R domain corrects the cystic fibrosis chloride transport defect in human airway epithelia in vitro and in mouse nasal mucosa in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3093-3098.	3.3	51
32	Cystic Fibrosis Transmembrane Conductance Regulator Clâ^' Channels with R Domain Deletions and Translocations Show Phosphorylation-dependent and -independent Activity. Journal of Biological Chemistry, 2001, 276, 1904-1910.	1.6	26
33	Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Clâ^ Channel by Its R Domain. Journal of Biological Chemistry, 2001, 276, 7689-7692.	1.6	98
34	The ABC of a versatile engine. Nature, 1998, 396, 623-624.	13.7	29
35	Cystic fibrosis problem probed by proteolysis. Nature Structural Biology, 1998, 5, 167-169.	9.7	10
36	Association of Domains within the Cystic Fibrosis Transmembrane Conductance Regulator. Biochemistry, 1997, 36, 1287-1294.	1.2	63

Lynda S Ostedgaard

#	Article	IF	CITATIONS
37	Understanding how cystic fibrosis mutations cause a loss of Clâ^' channel function. Trends in Molecular Medicine, 1996, 2, 290-297.	2.6	17
38	Effect of Cystic Fibrosis-associated Mutations in the Fourth Intracellular Loop of Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Biological Chemistry, 1996, 271, 21279-21284.	1.6	93
39	The amino-terminal portion of CFTR forms a regulated Clâ^' channel. Cell, 1994, 76, 1091-1098.	13.5	117
40	Mutations in CFTR associated with mild-disease-form CI- channels with altered pore properties. Nature, 1993, 362, 160-164.	13.7	451
41	Identification of revertants for the cystic fibrosis ΔF508 mutation using STE6-CFTR chimeras in yeast. Cell, 1993, 73, 335-346.	13.5	183
42	Dysfunction of CFTR bearing the AF508 mutation. Journal of Cell Science, 1993, 1993, 235-239.	1.2	36
43	Cystic fibrosis transmembrane conductance regulator: A chloride channel with novel regulation. Neuron, 1992, 8, 821-829.	3.8	226
44	Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature, 1990, 347, 382-386.	13.7	337
45	Erythrocyte Incorporation of Ingested 58-Iron by Infants. Pediatric Research, 1988, 24, 20-24.	1.1	59
46	Cholesterol turnover and ecdysone content in tissues of normal and de-eyestalked crabs (Cancer) Tj ETQq0 0 0 r	gBT /Overl 1.4	ock 10 Tf 50

47	Ovarian and haemolymph titres of ecdysteroid during the gonadotrophic cycle in Diploptera punctata. Journal of Insect Physiology, 1984, 30, 643-651.	0.9	41
48	Effects of eyestalk removal in crabs: Relation to normal premolt. The Journal of Experimental Zoology, 1982, 221, 323-327.	1.4	21
49	The molt cycle of the crab,Cancer antennarius: Computer-aided staging. The Journal of Experimental Zoology, 1981, 218, 195-202.	1.4	6