Christopher D Scharer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1300895/publications.pdf

Version: 2024-02-01

54 papers 3,472 citations

236833 25 h-index 53 g-index

60 all docs

60 docs citations

60 times ranked

6061 citing authors

#	Article	IF	CITATIONS
1	Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity, 2018, 49, 725-739.e6.	6.6	661
2	Sex-Determining Region Y Box 4 Is a Transforming Oncogene in Human Prostate Cancer Cells. Cancer Research, 2006, 66, 4011-4019.	0.4	264
3	Lactobacilli Modulate Epithelial Cytoprotection through the Nrf2 Pathway. Cell Reports, 2015, 12, 1217-1225.	2.9	183
4	Genome-Wide Promoter Analysis of the <i>SOX4</i> Transcriptional Network in Prostate Cancer Cells. Cancer Research, 2009, 69, 709-717.	0.4	176
5	Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function. Journal of Immunology, 2013, 191, 3419-3429.	0.4	167
6	Epigenetic programming underpins B cell dysfunction in human SLE. Nature Immunology, 2019, 20, 1071-1082.	7.0	142
7	NF-κB Regulates PD-1 Expression in Macrophages. Journal of Immunology, 2015, 194, 4545-4554.	0.4	134
8	Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation. Nature Immunology, 2016, 17, 1216-1225.	7.0	124
9	Progressive Upregulation of Oxidative Metabolism Facilitates Plasmablast Differentiation to a T-Independent Antigen. Cell Reports, 2018, 23, 3152-3159.	2.9	123
10	IFN \hat{I}^3 induces epigenetic programming of human T-bethi B cells and promotes TLR7/8 and IL-21 induced differentiation. ELife, 2019, 8, .	2.8	116
11	EZH2 Represses the B Cell Transcriptional Program and Regulates Antibody-Secreting Cell Metabolism and Antibody Production. Journal of Immunology, 2018, 200, 1039-1052.	0.4	99
12	B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation. Nature Communications, 2018, 9, 1900.	5.8	94
13	Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs. Nature Communications, 2018, 9, 1698.	5.8	93
14	T-bet Transcription Factor Promotes Antibody-Secreting Cell Differentiation by Limiting the Inflammatory Effects of IFN- \hat{I}^3 on B Cells. Immunity, 2019, 50, 1172-1187.e7.	6.6	90
15	ATAC-seq on biobanked specimens defines a unique chromatin accessibility structure in na $ ilde{A}^-$ ve SLE B cells. Scientific Reports, 2016, 6, 27030.	1.6	88
16	<i>ZBTB32</i> Is an Early Repressor of the CIITA and MHC Class II Gene Expression during B Cell Differentiation to Plasma Cells. Journal of Immunology, 2012, 189, 2393-2403.	0.4	76
17	Environmental cues regulate epigenetic reprogramming of airway-resident memory CD8+ T cells. Nature Immunology, 2020, 21, 309-320.	7.0	7 2
18	Cutting Edge: Chromatin Accessibility Programs CD8 T Cell Memory. Journal of Immunology, 2017, 198, 2238-2243.	0.4	68

#	Article	IF	CITATIONS
19	Aurora kinase inhibitors synergize with paclitaxel to induce apoptosis in ovarian cancer cells. Journal of Translational Medicine, 2008, 6, 79.	1.8	62
20	Signaling through the Inhibitory Fc Receptor FcγRIIB Induces CD8+ÂT Cell Apoptosis to Limit T Cell Immunity. Immunity, 2020, 52, 136-150.e6.	6.6	62
21	ZBTB32 Restricts the Duration of Memory B Cell Recall Responses. Journal of Immunology, 2016, 197, 1159-1168.	0.4	50
22	The Histone Demethylase LSD1 Regulates B Cell Proliferation and Plasmablast Differentiation. Journal of Immunology, 2018, 201, 2799-2811.	0.4	43
23	Antibody-secreting cell destiny emerges during the initial stages of B-cell activation. Nature Communications, 2020, 11, 3989.	5.8	41
24	Phosphoinositide 3-Kinase Signaling Can Modulate MHC Class I and II Expression. Molecular Cancer Research, 2019, 17, 2395-2409.	1.5	36
25	Understanding and measuring human Bâ€cell tolerance and its breakdown in autoimmune disease. Immunological Reviews, 2019, 292, 76-89.	2.8	34
26	Genome-wide CIITA-binding profile identifies sequence preferences that dictate function versus recruitment. Nucleic Acids Research, 2015, 43, 3128-3142.	6.5	28
27	Balancing Selection on a Regulatory Region Exhibiting Ancient Variation That Predates Human–Neandertal Divergence. PLoS Genetics, 2013, 9, e1003404.	1.5	26
28	B Cell Differentiation Is Associated with Reprogramming the CCCTC Binding Factor–Dependent Chromatin Architecture of the Murine MHC Class II Locus. Journal of Immunology, 2014, 192, 3925-3935.	0.4	25
29	IgM, IgG, and IgA Influenza-Specific Plasma Cells Express Divergent Transcriptomes. Journal of Immunology, 2019, 203, 2121-2129.	0.4	22
30	Extrafollicular IgD+ B cells generate IgE antibody secreting cells in the nasal mucosa. Mucosal Immunology, 2021, 14, 1144-1159.	2.7	21
31	Chemically defined serum-free and xeno-free media for multiple cell lineages. Annals of Translational Medicine, 2014, 2, 97.	0.7	21
32	Generation of human long-lived plasma cells by developmentally regulated epigenetic imprinting. Life Science Alliance, 2022, 5, e202101285.	1.3	19
33	A super enhancer controls expression and chromatin architecture within the MHC class II locus. Journal of Experimental Medicine, 2020, 217, .	4.2	17
34	Targeting BMI-1 in B cells restores effective humoral immune responses and controls chronic viral infection. Nature Immunology, 2022, 23, 86-98.	7.0	17
35	Low ethanol concentration alters CHRNA5 RNA levels during early human development. Reproductive Toxicology, 2010, 30, 489-492.	1.3	16
36	An IRF4â€"MYCâ€"mTORC1 Integrated Pathway Controls Cell Growth and the Proliferative Capacity of Activated B Cells during B Cell Differentiation In Vivo. Journal of Immunology, 2021, 207, 1798-1811.	0.4	16

#	Article	IF	CITATIONS
37	Conserved Epigenetic Programming and Enhanced Heme Metabolism Drive Memory B Cell Reactivation. Journal of Immunology, 2021, 206, 1493-1504.	0.4	15
38	LSD1 Cooperates with Noncanonical NF-κB Signaling to Regulate Marginal Zone B Cell Development. Journal of Immunology, 2019, 203, 1867-1881.	0.4	12
39	Roadmap to a plasma cell: Epigenetic and transcriptional cues that guide B cell differentiation. Immunological Reviews, 2021, 300, 54-64.	2.8	12
40	Obesity-induced galectin-9 is a therapeutic target in B-cell acute lymphoblastic leukemia. Nature Communications, 2022, 13, 1157.	5.8	12
41	Epigenetic gene regulation in plasma cells. Immunological Reviews, 2021, 303, 8-22.	2.8	10
42	Human genetic variants disrupt RGS14 nuclear shuttling and regulation of LTP in hippocampal neurons. Journal of Biological Chemistry, 2021, 296, 100024.	1.6	9
43	Murine gammaherpesvirus infection is skewed toward Igλ+ B cells expressing a specific heavy chain V-segment. PLoS Pathogens, 2020, 16, e1008438.	2.1	7
44	Cohesin Core Complex Gene Dosage Contributes to Germinal Center Derived Lymphoma Phenotypes and Outcomes. Frontiers in Immunology, 2021, 12, 688493.	2.2	5
45	Circulating Tregs Accumulate in Omental Tumors and Acquire Adipose-Resident Features. Cancer Immunology Research, 2022, 10, 641-655.	1.6	4
46	Transcriptomic and epigenomic dynamics associated with development of human iPSC-derived GABAergic interneurons. Human Molecular Genetics, 2020, 29, 2579-2595.	1.4	3
47	The Murine MHC Class II Super Enhancer <i>IA/IE-SE</i> Contains a Functionally Redundant CTCF-Binding Component and a Novel Element Critical for Maximal Expression. Journal of Immunology, 2021, 206, 2221-2232.	0.4	3
48	Selective DNA Demethylation Accompanies T Cell Homeostatic Proliferation and Gene Regulation in Lupus-Prone lpr Mice. ImmunoHorizons, 2020, 4, 679-687.	0.8	3
49	H3K27me3 Demethylase UTX Restrains Plasma Cell Formation. Journal of Immunology, 2022, 208, 1873-1885.	0.4	3
50	T Cell Homeostatic Proliferation Promotes a Redox State That Drives Metabolic and Epigenetic Upregulation of Inflammatory Pathways in Lupus. Antioxidants and Redox Signaling, 2022, 36, 410-422.	2.5	2
51	Inhibition of H3K27me3 Demethylases Promotes Plasmablast Formation. ImmunoHorizons, 2021, 5, 918-930.	0.8	2
52	Selective DNA Demethylation Accompanies T Cell Homeostatic Proliferation and Gene Regulation in Lupus-Prone Mice. ImmunoHorizons, 2020, 4, 679-687.	0.8	1
53	Mutation of murine Sox4 untranslated regions results in partially penetrant perinatal lethality. In Vivo, 2014, 28, 709-18.	0.6	O
54	Somatic Diversification of Rearranged Antibody Gene Segments by Intra- and Interchromosomal Templated Mutagenesis. Journal of Immunology, 2022, , ji2100434.	0.4	0