HÃ¥kan Pettersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/13008/publications.pdf

Version: 2024-02-01

567281 552781 31 669 15 26 citations h-index g-index papers 31 31 31 975 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Shear Stress Measurements on InAs Nanowires by AFM Manipulation. Small, 2007, 3, 1398-1401.	10.0	58
2	A Comparative Study of Absorption in Vertically and Laterally Oriented InP Core–Shell Nanowire Photovoltaic Devices. Nano Letters, 2015, 15, 1809-1814.	9.1	57
3	Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning. Nature Communications, 2014, 5, 3221.	12.8	54
4	A New Route toward Semiconductor Nanospintronics: Highly Mn-Doped GaAs Nanowires Realized by lon-Implantation under Dynamic Annealing Conditions. Nano Letters, $2011, 11, 3935-3940$.	9.1	47
5	Friction Measurements of InAs Nanowires on Silicon Nitride by AFM Manipulation. Small, 2009, 5, 203-207.	10.0	46
6	Hopping Conduction in Mn Ion-Implanted GaAs Nanowires. Nano Letters, 2012, 12, 4838-4842.	9.1	39
7	Study of photocurrent generation in InP nanowire-based p+-i-n+ photodetectors. Nano Research, 2014, 7, 544-552.	10.4	37
8	Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors. Nano Letters, 2017, 17, 3356-3362.	9.1	36
9	Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared. Nano Letters, 2018, 18, 365-372.	9.1	34
10	High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Scientific Reports, 2021, 11, 20180.	3.3	33
11	Electrical and optical properties of InP nanowire ensemble p ⁺ –i–n ⁺ photodetectors. Nanotechnology, 2012, 23, 135201.	2.6	31
12	InP/InAsP Nanowire-Based Spatially Separate Absorption and Multiplication Avalanche Photodetectors. ACS Photonics, 2017, 4, 2693-2698.	6.6	27
13	Magnetic Polarons and Large Negative Magnetoresistance in GaAs Nanowires Implanted with Mn Ions. Nano Letters, 2013, 13, 5079-5084.	9.1	26
14	Ill–V Nanowire Synthesis by Use of Electrodeposited Gold Particles. Nano Letters, 2015, 15, 134-138.	9.1	22
15	Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities. RSC Advances, 2019, 9, 30585-30598.	3.6	17
16	Optimization of Current Injection in AlGaInP Coreâ^'Shell Nanowire Light-Emitting Diodes. Nano Letters, 2017, 17, 3599-3606.	9.1	15
17	High Responsivity of InP/InAsP Nanowire Array Broadband Photodetectors Enhanced by Optical Gating. Nano Letters, 2019, 19, 8424-8430.	9.1	13
18	Synthesis of Vertically Aligned ZnO Nanorods Using Sol-gel Seeding and Colloidal Lithography Patterning. Nanoscale Research Letters, 2021, 16, 46.	5.7	13

#	Article	IF	CITATIONS
19	Enhanced broadband absorption in nanowire arrays with integrated Bragg reflectors. Nanophotonics, 2018, 7, 819-825.	6.0	11
20	Bias-dependent spectral tuning in InP nanowire-based photodetectors. Nanotechnology, 2017, 28, 114006.	2.6	10
21	Embedded sacrificial AlAs segments in GaAs nanowires for substrate reuse. Nanotechnology, 2020, 31, 204002.	2.6	8
22	Template-assisted vapour–liquid–solid growth of InP nanowires on (001) InP and Si substrates. Nanoscale, 2020, 12, 888-894.	5. 6	7
23	Nanowire photodetectors with embedded quantum heterostructures for infrared detection. Infrared Physics and Technology, 2019, 96, 209-212.	2.9	6
24	Gain and bandwidth of InP nanowire array photodetectors with embedded photogated InAsP quantum discs. Nanoscale, 2021, 13, 6227-6233.	5.6	6
25	Electrochemical investigation of carbon paper/ZnO nanocomposite electrodes for capacitive anion capturing. Scientific Reports, 2022, 12, .	3.3	5
26	Considering Symmetry Properties of InP Nanowire/Light Incidence Systems to Gain Broadband Absorption. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	4
27	Raman characterization of single-crystalline Ga0.96Mn0.04As:Zn nanowires realized by ion-implantation. Nanotechnology, 2019, 30, 335202.	2.6	3
28	Electrical transport properties of InAs nanowires synthesized by a solvothermal method. Nanotechnology, 2020, 31, 235709.	2.6	2
29	Evaluation of carrier density and mobility in Mn ion-implanted GaAs:Zn nanowires by Raman spectroscopy. Nanotechnology, 2020, 31, 205705.	2.6	2
30	Enhanced optical absorption in nanowires over a desire range of wavelengths., 2017,,.		0
31	SWIR-LWIR Photoluminescence from Sb-based Epilayers Grown on GaAs Substrates by using MBE. Journal of the Korean Physical Society, 2018, 73, 1604-1611.	0.7	O