John T Sullivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1300690/publications.pdf Version: 2024-02-01

ΙΟΗΝ Τ SΗΙΤΙΥΛΝ

#	Article	IF	CITATIONS
1	An epigenetic switch activates bacterial quorum sensing and horizontal transfer of an integrative and conjugative element. Nucleic Acids Research, 2022, 50, 975-988.	14.5	17
2	Comparative analysis of integrative and conjugative mobile genetic elements in the genus Mesorhizobium. Microbial Genomics, 2021, 7, .	2.0	13
3	Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
4	Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nature Communications, 2020, 11, 3797.	12.8	31
5	Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science, 2020, 369, 663-670.	12.6	87
6	Rhizobium leguminosarum bv. trifolii NodD2 Enhances Competitive Nodule Colonization in the Clover-Rhizobium Symbiosis. Applied and Environmental Microbiology, 2020, 86, .	3.1	14
7	Symbiosis islands of Loteae-nodulating Mesorhizobium comprise three radiating lineages with concordant nod gene complements and nodulation host-range groupings. Microbial Genomics, 2020, 6, .	2.0	7
8	Delineation of the integrase-attachment and origin-of-transfer regions of the symbiosis island ICEMISymR7A. Plasmid, 2019, 104, 102416.	1.4	4
9	Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny. Environmental Microbiology, 2018, 20, 97-110.	3.8	50
10	Evolutionary persistence of tripartite integrative and conjugative elements. Plasmid, 2017, 92, 30-36.	1.4	21
11	Structures of Exopolysaccharides Involved in Receptor-mediated Perception of Mesorhizobium loti by Lotus japonicus. Journal of Biological Chemistry, 2016, 291, 20946-20961.	3.4	32
12	Assembly and transfer of tripartite integrative and conjugative genetic elements. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12268-12273.	7.1	64
13	Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing–activated transfer of a mobile genetic element. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4104-4109.	7.1	68
14	High-Quality draft genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain CJ3Sym. Standards in Genomic Sciences, 2015, 10, 54.	1.5	2
15	Genome sequence of the Lotus corniculatus microsymbiont Mesorhizobium loti strain R88B. Standards in Genomic Sciences, 2014, 9, 3.	1.5	12
16	Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain NZP2037. Standards in Genomic Sciences, 2014, 9, 7.	1.5	5
17	Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain R7A. Standards in Genomic Sciences, 2014, 9, 6.	1.5	22
18	Conditional Requirement for Exopolysaccharide in the <i>Mesorhizobium–Lotus</i> Symbiosis. Molecular Plant-Microbe Interactions, 2013, 26, 319-329.	2.6	117

JOHN T SULLIVAN

#	Article	IF	CITATIONS
19	A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in <i><scp>M</scp>esorhizobium loti</i> through expression of a novel antiactivator. Molecular Microbiology, 2013, 87, 1-13.	2.5	50
20	The NifA-RpoN Regulon of Mesorhizobium loti Strain R7A and Its Symbiotic Activation by a Novel Lacl/GalR-Family Regulator. PLoS ONE, 2013, 8, e53762.	2.5	38
21	Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13859-13864.	7.1	301
22	The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nature Communications, 2010, 1, 10.	12.8	426
23	A LuxRlâ€family regulatory system controls excision and transfer of the <i>Mesorhizobium loti</i> strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Molecular Microbiology, 2009, 73, 1141-1155.	2.5	57
24	Nodulation Gene Mutants of <i>Mesorhizobium loti</i> R7A— <i>nodZ</i> and <i>nolL</i> Mutants Have Host-Specific Phenotypes on <i>Lotus</i> spp Molecular Plant-Microbe Interactions, 2009, 22, 1546-1554.	2.6	62
25	Host-specific regulation of symbiotic nitrogen fixation in Rhizobium leguminosarum biovar trifolii. Microbiology (United Kingdom), 2007, 153, 3184-3195.	1.8	32
26	Symbiosis-Induced Cascade Regulation of the Mesorhizobium loti R7A VirB/D4 Type IV Secretion System. Molecular Plant-Microbe Interactions, 2007, 20, 255-261.	2.6	55
27	Ferrichrome utilization in a mesorhizobial population: microevolution of a threeâ€locus system. Environmental Microbiology, 2007, 9, 2923-2932.	3.8	8
28	Excision and transfer of the <i>Mesorhizobium loti</i> R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Molecular Microbiology, 2006, 62, 723-734.	2.5	119
29	Comparative Sequence Analysis of the Symbiosis Island of Mesorhizobium loti Strain R7A. Journal of Bacteriology, 2002, 184, 3086-3095.	2.2	305

Physical and genetic map of the Clostridium saccharobutylicum (formerly Clostridium) Tj ETQq000 rgBT /Overlock 10 Tf 50 302 Td (action 1.8) Tf 50 225

31 gene involved in pimeloyl-CoA synthesis The GenBank accession number for the sequence reported in 1.8 54	31	The bio operon on the acquired symbiosis island of Mesorhizobium sp. strain R7A includes a novel gene involved in pimeloyl-CoA synthesis The GenBank accession number for the sequence reported in this paper is AF311738. Microbiology (United Kingdom), 2001, 147, 1315, 1322	1	.8	54	
---	----	---	---	----	----	--