Cheng Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1299841/publications.pdf

Version: 2024-02-01

43 papers 8,747 citations

257450 24 h-index 254184 43 g-index

44 all docs

44 docs citations

44 times ranked 12120 citing authors

#	Article	IF	CITATIONS
1	Controlling interlayer magnetic coupling in the two-dimensional magnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:n .<="" 105,="" 2022,="" b,="" physical="" review="" td=""><td>nn :832: /mm</td><td>ıl:n9n></td></mml:n></mml:msub></mml:mrow></mml:math>	nn :832: /mm	ıl:n 9 n>
2	Spin–orbit coupling proximity effect in MoS2/Fe3GeTe2 heterostructures. Applied Physics Letters, 2022, 120, .	3.3	11
3	Strong laser polarization control of coherent phonon excitation in van der Waals material Fe3GeTe2. Npj 2D Materials and Applications, 2022, 6, .	7.9	5
4	An Integrated Food Freshness Sensor Array System Augmented by a Metal–Organic Framework Mixed-Matrix Membrane and Deep Learning. ACS Sensors, 2022, 7, 1847-1854.	7.8	18
5	Observation of strong excitonic magneto-chiral anisotropy in twisted bilayer van der Waals crystals. Nature Communications, 2021, 12, 2088.	12.8	7
6	Ambient effect on the Curie temperatures and magnetic domains in metallic two-dimensional magnets. Npj 2D Materials and Applications, 2021, 5, .	7.9	13
7	Understanding and optimization of graphene gas sensors. Applied Physics Letters, 2021, 119, 013104.	3.3	27
8	Integrated Portable Shrimp-Freshness Prediction Platform Based on Ice-Templated Metal–Organic Framework Colorimetric Combinatorics and Deep Convolutional Neural Networks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16926-16936.	6.7	24
9	Ferroelectric Switching of Pure Spin Polarization in Two-Dimensional Electron Gas. Nano Letters, 2020, 20, 7230-7236.	9.1	2
10	Room-Temperature Giant Stark Effect of Single Photon Emitter in van der Waals Material. Nano Letters, 2019, 19, 7100-7105.	9.1	40
11	Multiferroicity in atomic van der Waals heterostructures. Nature Communications, 2019, 10, 2657.	12.8	224
12	Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363, .	12.6	1,039
13	Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8511-8516.	7.1	163
14	Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nature Electronics, 2018, 1, 404-410.	26.0	351
15	Patterning-Induced Ferromagnetism of Fe ₃ GeTe ₂ van der Waals Materials beyond Room Temperature. Nano Letters, 2018, 18, 5974-5980.	9.1	177
16	Electronic transport across metal-graphene edge contact. 2D Materials, 2017, 4, 025033.	4.4	4
17	Energetics of metal ion adsorption on and diffusion through crown ethers: First principles study on two-dimensional electrolyte. Solid State Ionics, 2017, 301, 176-181.	2.7	9
18	Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265-269.	27.8	3,260

#	Article	IF	Citations
19	Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Materials, 2017, 4, 015026.	4.4	160
20	Schottky Barrier Height of Pd/MoS ₂ Contact by Large Area Photoemission Spectroscopy. ACS Applied Materials & Diterfaces, 2017, 9, 38977-38983.	8.0	36
21	Materials Design on the Origin of Gap States in a High- $\hat{\mathbb{P}}/\mathbb{Q}$ GaAs Interface. Engineering, 2015, 1, 372-377.	6.7	3
22	First-Principles Study of Crown Ether and Crown Ether-Li Complex Interactions with Graphene. Journal of Physical Chemistry C, 2015, 119, 20016-20022.	3.1	11
23	Chemical bonding and stability of multilayer graphene oxide layers. , 2014, , .		0
24	Film Structure of Epitaxial Graphene Oxide on SiC: Insight on the Relationship Between Interlayer Spacing, Water Content, and Intralayer Structure. Advanced Materials Interfaces, 2014, 1, 1300106.	3.7	18
25	Grain Boundary Effect on Electrical Transport Properties of Graphene. Journal of Physical Chemistry C, 2014, 118, 2338-2343.	3.1	71
26	Hole Contacts on Transition Metal Dichalcogenides: Interface Chemistry and Band Alignments. ACS Nano, 2014, 8, 6265-6272.	14.6	173
27	Realistic Metal–Graphene Contact Structures. ACS Nano, 2014, 8, 642-649.	14.6	93
28	Modulation of contact resistance between metal and graphene by controlling the graphene edge, contact area, and point defects: An <i>ab initio</i> study. Journal of Applied Physics, 2014, 115, .	2.5	30
29	The Unusual Mechanism of Partial Fermi Level Pinning at Metal–MoS ₂ Interfaces. Nano Letters, 2014, 14, 1714-1720.	9.1	629
30	Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters, 2013, 103, .	3.3	657
31	Metal Contacts on Physical Vapor Deposited Monolayer MoS ₂ . ACS Nano, 2013, 7, 11350-11357.	14.6	275
32	Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon Dioxide. Journal of Physical Chemistry C, 2013, 117, 23000-23008.	3.1	89
33	Photon-Assisted CVD Growth of Graphene Using Metal Adatoms As Catalysts. Journal of Physical Chemistry C, 2012, 116, 18263-18269.	3.1	4
34	Metal–Graphene–Metal Sandwich Contacts for Enhanced Interface Bonding and Work Function Control. ACS Nano, 2012, 6, 5381-5387.	14.6	114
35	Graphitization of Graphene Oxide with Ethanol during Thermal Reduction. Journal of Physical Chemistry C, 2012, 116, 9969-9979.	3.1	59
36	Si passivation effects on atomic bonding and electronic properties at HfO2/GaAs interface: A first-principles study. Journal of Applied Physics, 2011, 109, 063704.	2.5	9

CHENG GONG

#	Article	IF	CITATIONS
37	Sulfur passivation effect on HfO2/GaAs interface: A first-principles study. Applied Physics Letters, 2011, 98, 232113.	3.3	24
38	Field Emission from Atomically Thin Edges of Reduced Graphene Oxide. ACS Nano, 2011, 5, 4945-4952.	14.6	139
39	Spintronic properties of graphene films grown on Ni(111) substrate. Journal of Applied Physics, 2011, 110, 043704.	2.5	20
40	First-principles study of metal–graphene interfaces. Journal of Applied Physics, 2010, 108, .	2.5	358
41	First-Principles and Quantum Transport Studies of Metal-Graphene End Contacts. Materials Research Society Symposia Proceedings, 2010, 1259, 1.	0.1	2
42	The Role of Intercalated Water in Multilayered Graphene Oxide. ACS Nano, 2010, 4, 5861-5868.	14.6	359
43	Materials Science of Graphene for Novel Device Applications. ECS Transactions, 2009, 19, 185-199.	0.5	2