List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1299790/publications.pdf Version: 2024-02-01

LODGE F AZEVEDO

#	Article	IF	CITATIONS
1	A missense allele of PEX5 is responsible for the defective import of PTS2 cargo proteins into peroxisomes. Human Genetics, 2021, 140, 649-666.	3.8	6
2	CLASP2 binding to curved microtubule tips promotes flux and stabilizes kinetochore attachments. Journal of Cell Biology, 2020, 219, jcb.201905080.	5.2	20
3	A Mechanistic Perspective on PEX1 and PEX6, Two AAA+ Proteins of the Peroxisomal Protein Import Machinery. International Journal of Molecular Sciences, 2019, 20, 5246.	4.1	9
4	Membrane topologies of <scp>PEX</scp> 13 and <scp>PEX</scp> 14 provide new insights on the mechanism of protein import into peroxisomes. FEBS Journal, 2019, 286, 205-222.	4.7	36
5	The intrinsically disordered nature of the peroxisomal protein translocation machinery. FEBS Journal, 2019, 286, 24-38.	4.7	24
6	PEX13 Enters the RING, Lives Fast, Dies Young. Journal of Molecular Biology, 2018, 430, 1559-1561.	4.2	0
7	Chemically monoubiquitinated PEX5 binds to the components of the peroxisomal docking and export machinery. Scientific Reports, 2018, 8, 16014.	3.3	8
8	Peroxisomal monoubiquitinated PEX5 interacts with the AAA ATPases PEX1 and PEX6 and is unfolded during its dislocation into the cytosol. Journal of Biological Chemistry, 2018, 293, 11553-11563.	3.4	37
9	Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream of SIZ1 in plant development. Journal of Experimental Botany, 2018, 69, 4633-4649.	4.8	25
10	Determining the Topology of Peroxisomal Proteins Using Protease Protection Assays. Methods in Molecular Biology, 2017, 1595, 27-35.	0.9	3
11	The peroxisomal matrix protein translocon is a large cavity-forming protein assembly into which PEX5 protein enters to release its cargo. Journal of Biological Chemistry, 2017, 292, 15287-15300.	3.4	27
12	Protein transport into peroxisomes: Knowns and unknowns. BioEssays, 2017, 39, 1700047.	2.5	60
13	A cell-free organelle-based in vitro system for studying the peroxisomal protein import machinery. Nature Protocols, 2016, 11, 2454-2469.	12.0	12
14	The first minutes in the life of a peroxisomal matrix protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 814-820.	4.1	31
15	Evaluation of the activity and substrate specificity of the human SENP family of SUMO proteases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 139-147.	4.1	27
16	The peroxisomal protein import machinery displays a preference for monomeric substrates. Open Biology, 2015, 5, 140236.	3.6	30
17	The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors. Scientific Reports, 2015, 5, 12836.	3.3	82
18	Revisiting the intraperoxisomal pathway of mammalian PEX7. Scientific Reports, 2015, 5, 11806.	3.3	20

#	Article	IF	CITATIONS
19	Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy, 2015, 11, 1326-1340.	9.1	79
20	<scp>PEX5</scp> , the Shuttling Import Receptor for Peroxisomal Matrix Proteins, Is a Redox‣ensitive Protein. Traffic, 2014, 15, 94-103.	2.7	67
21	A PEX7-Centered Perspective on the Peroxisomal Targeting Signal Type 2-Mediated Protein Import Pathway. Molecular and Cellular Biology, 2014, 34, 2917-2928.	2.3	34
22	Ubiquitin in the peroxisomal protein import pathway. Biochimie, 2014, 98, 29-35.	2.6	33
23	Intracellular Trafficking of AIP56, an NF-κB-Cleaving Toxin from Photobacterium damselae subsp. piscicida. Infection and Immunity, 2014, 82, 5270-5285.	2.2	19
24	Factors Involved in Ubiquitination and Deubiquitination of PEX5, the Peroxisomal Shuttling Receptor. , 2014, , 371-388.		0
25	A Cargo-centered Perspective on the PEX5 Receptor-mediated Peroxisomal Protein Import Pathway. Journal of Biological Chemistry, 2013, 288, 29151-29159.	3.4	46
26	The Apoptogenic Toxin AIP56 Is a Metalloprotease A-B Toxin that Cleaves NF-κb P65. PLoS Pathogens, 2013, 9, e1003128.	4.7	41
27	Identification of Ubiquitin-specific Protease 9X (USP9X) as a Deubiquitinase Acting on Ubiquitin-Peroxin 5 (PEX5) Thioester Conjugate. Journal of Biological Chemistry, 2012, 287, 12815-12827.	3.4	87
28	Heat shock induces a massive but differential inactivation of SUMO-specific proteases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1958-1966.	4.1	44
29	High-Yield Expression in Escherichia coli and Purification of Mouse Ubiquitin-Activating Enzyme E1. Molecular Biotechnology, 2012, 51, 254-261.	2.4	46
30	Caspase-1 and IL-1Î ² Processing in a Teleost Fish. PLoS ONE, 2012, 7, e50450.	2.5	90
31	PEX5 Protein Binds Monomeric Catalase Blocking Its Tetramerization and Releases It upon Binding the N-terminal Domain of PEX14. Journal of Biological Chemistry, 2011, 286, 40509-40519.	3.4	81
32	Properties of the Ubiquitin-Pex5p Thiol Ester Conjugate. Journal of Biological Chemistry, 2009, 284, 10504-10513.	3.4	80
33	Mapping the Cargo Protein Membrane Translocation Step into the PEX5 Cycling Pathway. Journal of Biological Chemistry, 2009, 284, 27243-27251.	3.4	44
34	The cytosolic domain of PEX3, a protein involved in the biogenesis of peroxisomes, binds membrane lipids. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1669-1675.	4.1	22
35	The peroxisomal protein import machinery – a case report of transient ubiquitination with a new flavor. Cellular and Molecular Life Sciences, 2009, 66, 254-262.	5.4	57
36	A nonsense mutation in the LIMP-2 gene associated with progressive myoclonic epilepsy and nephrotic syndrome. Human Molecular Genetics, 2008, 17, 2238-2243.	2.9	99

#	Article	IF	CITATIONS
37	Members of the E2D (UbcH5) Family Mediate the Ubiquitination of the Conserved Cysteine of Pex5p, the Peroxisomal Import Receptor. Journal of Biological Chemistry, 2008, 283, 14190-14197.	3.4	118
38	Stimulation of an Unfolded Protein Response Impairs MHC Class I Expression. Journal of Immunology, 2007, 178, 3612-3619.	0.8	67
39	Proteomics Characterization of Mouse Kidney Peroxisomes by Tandem Mass Spectrometry and Protein Correlation Profiling. Molecular and Cellular Proteomics, 2007, 6, 2045-2057.	3.8	210
40	Ubiquitination of Mammalian Pex5p, the Peroxisomal Import Receptor. Journal of Biological Chemistry, 2007, 282, 31267-31272.	3.4	158
41	Chemical Chaperones Reduce Endoplasmic Reticulum Stress and Prevent Mutant HFE Aggregate Formation. Journal of Biological Chemistry, 2007, 282, 27905-27912.	3.4	150
42	Functional characterization of two missense mutations in Pex5p—C11S and N526K. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1141-1148.	4.1	32
43	The N-terminal Half of the Peroxisomal Cycling Receptor Pex5p is a Natively Unfolded Domain. Journal of Molecular Biology, 2006, 356, 864-875.	4.2	76
44	Pex14p, more than just a docking protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1574-1584.	4.1	80
45	The Import Competence of a Peroxisomal Membrane Protein Is Determined by Pex19p before the Docking Step. Journal of Biological Chemistry, 2006, 281, 34492-34502.	3.4	53
46	HFE cross-talks with the MHC class I antigen presentation pathway. Blood, 2005, 106, 971-977.	1.4	55
47	AIP56, a novel plasmid-encoded virulence factor ofPhotobacterium damselaesubsp.piscicidawith apoptogenic activity against sea bass macrophages and neutrophils. Molecular Microbiology, 2005, 58, 1025-1038.	2.5	85
48	Probing substrate-induced conformational alterations in adrenoleukodystrophy protein by proteolysis. Journal of Human Genetics, 2005, 50, 99-105.	2.3	26
49	Pex5p, the Peroxisomal Cycling Receptor, Is a Monomeric Non-globular Protein. Journal of Biological Chemistry, 2005, 280, 24404-24411.	3.4	43
50	Characterization of the mammalian peroxisomal import machinery. Pex2p, Pex5p, Pex12p, and Pex14p are subunits of the same protein assembly. VOLUME 276 (2001) PAGES 29935-29942. Journal of Biological Chemistry, 2005, 280, 33096.	3.4	0
51	The N Terminus of the Peroxisomal Cycling Receptor, Pex5p, Is Required for Redirecting the Peroxisome-associated Peroxin Back to the Cytosol. Journal of Biological Chemistry, 2004, 279, 46573-46579.	3.4	49
52	Protein Translocation Across the Peroxisomal Membrane. Cell Biochemistry and Biophysics, 2004, 41, 451-468.	1.8	25
53	Mouse liver PMP70 and ALDP: homomeric interactions prevail in vivo. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1689, 235-243.	3.8	51
54	Selective detection of UCP 3 expression in skeletal muscle: effect of thyroid status and temperature acclimation. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1604, 170-179.	1.0	29

#	Article	IF	CITATIONS
55	Oligomerization capacity of two arylsulfatase A mutants: C300F and P425T. Biochemical and Biophysical Research Communications, 2003, 306, 293-297.	2.1	8
56	The Energetics of Pex5p-mediated Peroxisomal Protein Import. Journal of Biological Chemistry, 2003, 278, 39483-39488.	3.4	81
57	Characterization of the Peroxisomal Cycling Receptor, Pex5p, Using a Cell-free in Vitro Import System. Journal of Biological Chemistry, 2003, 278, 226-232.	3.4	92
58	Insertion of Pex5p into the Peroxisomal Membrane Is Cargo Protein-dependent. Journal of Biological Chemistry, 2003, 278, 4389-4392.	3.4	79
59	Characterization of the Peroxisomal Cycling Receptor Pex5p Import Pathway. Advances in Experimental Medicine and Biology, 2003, 544, 219-220.	1.6	13
60	Mammalian Pex14p: membrane topology and characterisation of the Pex14p–Pex14p interaction. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1567, 13-22.	2.6	45
61	Molecular characterization of 21 X-ALD Portuguese families: identification of eight novel mutations in the ABCD1 gene. Molecular Genetics and Metabolism, 2002, 76, 62-67.	1.1	17
62	Characterisation of two mutations in the ABCD1 gene leading to low levels of normal ALDP. Human Genetics, 2001, 109, 616-622.	3.8	15
63	Characterization of the Mammalian Peroxisomal Import Machinery. Journal of Biological Chemistry, 2001, 276, 29935-29942.	3.4	88
64	Characterization of Peroxisomal Pex5p from Rat Liver. Journal of Biological Chemistry, 2000, 275, 32444-32451.	3.4	106
65	Identification of a 24 kDa intrinsic membrane protein from mammalian peroxisomes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1445, 337-341.	2.4	26
66	Alkaline Density Gradient Floatation of Membranes: Polypeptide Composition of the Mammalian Peroxisomal Membrane. Analytical Biochemistry, 1999, 274, 270-277.	2.4	20
67	Disruption of the gene encoding the 78-kilodalton subunit of the peripheral arm of complex I in Neurospora crassa by repeat induced point mutation (RIP). Current Genetics, 1995, 27, 339-350.	1.7	22
68	Characterization of a membrane fragment of respiratory chain complex I from Neurospora crassa. Insights on the topology of the ubiquinone-binding site. International Journal of Biochemistry & Cell Biology, 1994, 26, 505-510.	0.5	14
69	Two nuclear-coded subunits of mitochondrial complex I are similar to different domains of a bacterial formate hydrogenlyase subunit. International Journal of Biochemistry & Cell Biology, 1994, 26, 1391-1393.	0.5	12
70	Complementary DNA sequences of the 24 kDa and 21 kDa subunits of complex I from Neurospora. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1188, 159-161.	1.0	17
71	In organello assembly of respiratory-chain complex I: primary structure of the 14.8 kDa subunit of Neurospora crassa complex I. Biochemical Journal, 1994, 299, 297-302.	3.7	2
72	The 12.3 kDa subunit of complex I (respiratory-chain NADH dehydrogenase) from Neurospora crassa: cDNA cloning and chromosomal mapping of the gene. Biochemical Journal, 1993, 291, 729-732.	3.7	30

#	Article	IF	CITATIONS
73	Cloning, in vitro mitochondrial import and membrane assembly of the 17.8 kDa subunit of complex I from Neurospora crassa. Biochemical Journal, 1993, 293, 501-506.	3.7	5
74	Primary structure and mitochondrial import <i>in vitro</i> of the 20.9 kDa subunit of complex I from <i>Neurospora crassa</i> . Biochemical Journal, 1992, 288, 29-34.	3.7	24
75	Primary structure and in vitro expression of the N. crassa phosphoglycerate kinase. DNA Sequence, 1992, 2, 265-267.	0.7	3
76	Characterization of the 9.5-kDa ubiquinone-binding protein of NADH:ubiquinone oxidoreductase (complex I) from Neurospora crassa. Biochemistry, 1992, 31, 11420-11424.	2.5	29
77	Primary structures of two subunits of NADH:ubiquinone reductase from Neurospora crassa concerned with NADH-oxidation. Relationship to a soluble NAD-reducing hydrogenase of Alcaligenes eutrophus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1090, 133-138.	2.4	49