
Justyna Kalinowska-TÅ,uÅ>cik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1299617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids. Organic Letters, 2015, 17, 4980-4983.	4.6	55
2	Acoustic Droplet Ejection Enabled Automated Reaction Scouting. ACS Central Science, 2019, 5, 451-457.	11.3	40
3	Artificial Macrocycles by Ugi Reaction and Passerini Ring Closure. Journal of Organic Chemistry, 2016, 81, 8789-8795.	3.2	37
4	Two‣tep Synthesis of Complex Artificial Macrocyclic Compounds. Angewandte Chemie - International Edition, 2017, 56, 10725-10729.	13.8	37
5	De Novo Assembly of Highly Substituted Morpholines and Piperazines. Organic Letters, 2017, 19, 642-645.	4.6	35
6	Crystal structures of IspF from Plasmodium falciparum and Burkholderia cenocepacia: comparisons inform antimicrobial drug target assessment. BMC Structural Biology, 2014, 14, 1.	2.3	34
7	Two-Step Macrocycle Synthesis by Classical Ugi Reaction. Journal of Organic Chemistry, 2018, 83, 1441-1447.	3.2	34
8	Novel spirohydantoin derivative as a potent multireceptor-active antipsychotic and antidepressant agent. Bioorganic and Medicinal Chemistry, 2015, 23, 3436-3447.	3.0	32
9	αâ€Amino Acidâ€Isosteric αâ€Amino Tetrazoles. Chemistry - A European Journal, 2016, 22, 3009-3018.	3.3	32
10	A Unique Mdm2-Binding Mode of the 3-Pyrrolin-2-one- and 2-Furanone-Based Antagonists of the p53-Mdm2 Interaction. ACS Chemical Biology, 2016, 11, 3310-3318.	3.4	31
11	Roomâ€Temperature Bistability in a Ni–Fe Chain: Electron Transfer Controlled by Temperature, Pressure, Light, and Humidity. Angewandte Chemie - International Edition, 2021, 60, 2330-2338.	13.8	30
12	Application of 2,4,6-trioxo-pyrimidin-5-ylidene alditols in the synthesis of pyrano[2,3-d]pyrimidines containing a sugar moiety by hetero-Diels–Alder reactions and by conjugate Michael addition–cyclizations. Tetrahedron, 2013, 69, 8216-8227.	1.9	26
13	Hydrazine in the Ugi Tetrazole Reaction. Synthesis, 2016, 48, 1122-1130.	2.3	25
14	Concise Synthesis of Tetrazole Macrocycle. Organic Letters, 2017, 19, 5078-5081.	4.6	23
15	Multicomponent Reaction Based Synthesis of 1-Tetrazolylimidazo[1,5- <i>a</i>]pyridines. Organic Letters, 2018, 20, 3871-3874.	4.6	22
16	Intramolecular rhodium-catalyzed activation of α-amino C–H bonds: decisive influence of conformational factors in the synthesis of bicyclic aminals from N-sulfamoyloxyacetyl azacycloalkanes. Tetrahedron Letters, 2007, 48, 8531-8535.	1.4	21
17	2-Aminoimidazole-based antagonists of the 5-HT6 receptor – A new concept in aminergic GPCR ligand design. European Journal of Medicinal Chemistry, 2019, 179, 1-15.	5.5	20
18	Application of dimedone enamines as dienophiles: stereoselective synthesis of amino enols of fused uracils containing a sugar moiety by hetero-Diels–Alder reactions of barbituric acid 5-ylidene alditols with dimedone enamines. Tetrahedron, 2015, 71, 8911-8924.	1.9	19

Justyna Kalinowska-TÅ,uÅ>cik

#	Article	IF	CITATIONS
19	Cleavable β-Cyanoethyl Isocyanide in the Ugi Tetrazole Reaction. Organic Letters, 2016, 18, 4762-4765.	4.6	19
20	Two Cycles with One Catch: Hydrazine in Ugi 4-CR and Its Postcyclizations. ACS Combinatorial Science, 2017, 19, 193-198.	3.8	19
21	Diverse Isoquinoline Scaffolds by Ugi/Pomeranz–Fritsch and Ugi/Schlittler–Müller Reactions. Organic Letters, 2019, 21, 3533-3537.	4.6	18
22	Ammonia-Promoted One-Pot Tetrazolopiperidinone Synthesis by Ugi Reaction. ACS Combinatorial Science, 2017, 19, 343-350.	3.8	17
23	Ugi Multicomponent Reaction Based Synthesis of Medium-Sized Rings. Organic Letters, 2017, 19, 6176-6179.	4.6	16
24	Versatile Protecting-Group Free Tetrazolomethane Amine Synthesis by Ugi Reaction. ACS Combinatorial Science, 2016, 18, 170-175.	3.8	15
25	Synthesis of Highly Substituted Imidazole Uracil Containing Molecules via Ugi-4CR and Passerini-3CR. ACS Combinatorial Science, 2018, 20, 192-196.	3.8	15
26	Library-to-Library Synthesis of Highly Substituted α-Aminomethyl Tetrazoles via Ugi Reaction. ACS Combinatorial Science, 2018, 20, 70-74.	3.8	15
27	Glutarimide Alkaloids Through Multicomponent Reaction Chemistry. European Journal of Organic Chemistry, 2018, 2018, 6714-6719.	2.4	15
28	Molecular geometry of antimalarial amodiaquine in different crystalline environments. Journal of Molecular Structure, 2008, 875, 32-41.	3.6	12
29	Nucleophilic Addition onto Methyl-4H-1,4-oxazine-3-carboxylate Moiety: Short Access to 1,4-Diazine Privileged Substructures. Journal of Organic Chemistry, 2009, 74, 2911-2914.	3.2	12
30	Ratiometric fluorescent Zn ²⁺ and ln ³⁺ receptors of fused pyrazine with an aminopropanol chain in acetonitrile. New Journal of Chemistry, 2014, 38, 213-226.	2.8	12
31	Cysteine Isocyanide in Multicomponent Reaction: Synthesis of Peptido-Mimetic 1,3-Azoles. Journal of Organic Chemistry, 2017, 82, 9585-9594.	3.2	12
32	Diastereoselective one pot five-component reaction toward 4-(tetrazole)-1,3-oxazinanes. RSC Advances, 2017, 7, 49995-49998.	3.6	12
33	Intermolecular Interactions in Crystalline Hydroxychloroquine Sulfate in Comparison with Those in Selected Antimalarial Drugs. Journal of Chemical Crystallography, 2008, 38, 333-338.	1.1	11
34	A triclinic crystal form of <i>Escherichia coli</i> 4-diphosphocytidyl-2 <i>C</i> -methyl- <scp>D</scp> -erythritol kinase and reassessment of the quaternary structure. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 237-241.	0.7	11
35	The effect of the intramolecular C–Hâ <o 5-ht<sub="" bis-arylsulfones="" conformational="" interactions="" of="" on="" preferences="" the="" –="">6 receptor antagonists and beyond. RSC Advances, 2018, 8, 18672-18681.</o>	3.6	11
36	Copper-Catalyzed Modular Assembly of Polyheterocycles. Journal of Organic Chemistry, 2020, 85, 9915-9927.	3.2	11

#	Article	IF	CITATIONS
37	New 7-arylpiperazinylalkyl-8-morpholin-4-yl-purine-2,6-dione derivatives with anxiolytic activity – Synthesis, crystal structure and structure–activity study. Journal of Molecular Structure, 2014, 1067, 243-251.	3.6	10
38	Rational design of 5-HT6R ligands using a bioisosteric strategy: synthesis, biological evaluation and molecular modelling. RSC Advances, 2015, 5, 25806-25815.	3.6	10
39	Arylpiperazinylalkyl derivatives of 8-amino-1,3-dimethylpurine-2,6-dione as novel multitarget 5-HT/D receptor agents with potential antipsychotic activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1048-1062.	5.2	10
40	Two‣tep Synthesis of Complex Artificial Macrocyclic Compounds. Angewandte Chemie, 2017, 129, 10865-10869.	2.0	9
41	Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. European Journal of Medicinal Chemistry, 2019, 182, 111588.	5.5	9
42	Discovery of chromenes as inhibitors of macrophage migration inhibitory factor. Bioorganic and Medicinal Chemistry, 2018, 26, 999-1005.	3.0	8
43	Triiodide Organic Salts: Photoelectrochemistry at the Border between Insulators and Semiconductors. ChemElectroChem, 2018, 5, 3486-3497.	3.4	8
44	Electrostatic potential and non-covalent interactions analysis for the design of selective 5-HT7 ligands. Journal of Molecular Graphics and Modelling, 2019, 91, 130-139.	2.4	8
45	Sequential Multicomponent Synthesis of 2â€(Imidazo[1,5â€Î±]pyridinâ€1â€yl)â€1,3,4â€Oxadiazoles. European Jo of Organic Chemistry, 2019, 2019, 2029-2034.	ournal 2.4	8
46	Diaminoimidazopyrimidines: Access via the Groebke–Blackburn–Bienaymé Reaction and Structural Data Mining. European Journal of Organic Chemistry, 2020, 2020, 5601-5605.	2.4	8
47	Synthesis and reactivity of bis(cycloamidinium-2-yl)alkane bromide tribromides, brominating agents and tectons for molecular engineering. Monatshefte Für Chemie, 2008, 139, 543-548.	1.8	7
48	A Simple Synthesis of New 2-Thioxoimidazolidine-4,5-dicarboxylates from Vicinal Diisothiocyanatocarboxylates. Synthesis, 2008, 2008, 3261-3266.	2.3	7
49	Isocyanideâ€Based Multicomponent Reactions of Free Phenylboronic Acids. European Journal of Organic Chemistry, 2019, 2019, 6132-6137.	2.4	7
50	Scaffolding-Induced Property Modulation of Chemical Space. ACS Combinatorial Science, 2020, 22, 356-360.	3.8	7
51	Succinonitrile Activated by Thiating Agents as Precursor of Bis-cyclic Amidines, Tectons for Molecular Engineering. Monatshefte FĂ¼r Chemie, 2007, 138, 1273-1277.	1.8	6
52	â€~Atypical Ugi' tetrazoles. Chemical Communications, 2020, 56, 1799-1802.	4.1	6
53	Bismuth triiodide complexes: structure, spectroscopy, electronic properties, and memristive properties. Journal of Materials Chemistry C, 2020, 8, 6136-6148.	5.5	6
54	Asymmetric synthesis and in vivo/in vitro characterization of new hybrid anticonvulsants derived from (2,5-dioxopyrrolidin-1-yl)phenylacetamides. Bioorganic Chemistry, 2021, 109, 104751.	4.1	6

#	Article	IF	CITATIONS
55	How can fluorine directly and indirectly affect the hydrogen bonding in molecular systems? – A case study for monofluoroanilines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119536.	3.9	5
56	Influence of the position of the methyl substituent and <i>N</i> -oxide formation on the geometry and intermolecular interactions of 1-(phenoxyethyl)piperidin-4-ol derivatives. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 30-36.	0.5	5
57	Discovery of Cinnamylidene Derivative of Rhodanine with High Anthelmintic Activity against Rhabditis sp Molecules, 2022, 27, 2155.	3.8	5
58	Titanium(IV) Enolates of 2-Nitrocarboxylic Esters and Their Oxidative Chlorination. A Convenient Route to α-Chloro-α-nitrocarboxylates. Synlett, 2012, 2012, 267-271.	1.8	4
59	Cerium(IV) based oxidative free radical cyclization of active methylene compounds with some cyclic alkenes: A useful annulation method for terpene functionalization. Tetrahedron, 2019, 75, 2652-2663.	1.9	4
60	Enolates of 2-Isothiocyanatocarboxylic Esters: Synthesis of Thiazolo[5,4-d]-thiazole Derivatives and 2-Thioxo-1,3-thiazolidine-4-carboxylates. Synthesis, 2012, 44, 1736-1744.	2.3	2
61	An Approach to 2,3-Diaminosuccinic Acid Derivatives—Synthesis of 2-Thioxo-1,3-Imidazolidines by a Mannich Reaction. Australian Journal of Chemistry, 2012, 65, 333.	0.9	2
62	Structure and Reactivity of Glycosyl Isocyanides. European Journal of Organic Chemistry, 2019, 2019, 50-55.	2.4	2
63	Fourfold symmetric MCR's <i>via</i> the tetraisocyanide 1,3-diisocyano-2,2-bis(isocyanomethyl)propane. Chemical Communications, 2020, 56, 10662-10665.	4.1	2
64	Rationally designed N-phenylsulfonylindoles as a tool for the analysis of the non-basic 5-HT6R ligands binding mode. European Journal of Medicinal Chemistry, 2021, 209, 112916.	5.5	2
65	Roomâ€Temperature Bistability in a Ni–Fe Chain: Electron Transfer Controlled by Temperature, Pressure, Light, and Humidity. Angewandte Chemie, 2021, 133, 2360-2368.	2.0	2
66	Glycoconjugates via Phosphorus Ylides. European Journal of Organic Chemistry, 2019, 2019, 3632-3635.	2.4	1
67	Flat or angular? The impact of the nitrogen atom hybridization on the docking results for arylpiperazine derivatives as an example. Structural Chemistry, 2020, 31, 823-829.	2.0	1
68	Rücktitelbild: Roomâ€Temperature Bistability in a Ni–Fe Chain: Electron Transfer Controlled by Temperature, Pressure, Light, and Humidity (Angew. Chem. 5/2021). Angewandte Chemie, 2021, 133, 2740-2740.	2.0	1
69	Multifunctional arylsulfonamide derivatives with 5-HT ₆ /5-HT ₇ receptor antagonistic activity: a structural study. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1477-1486.	0.5	1
70	Bitter sweeteners: tetrazole derivatives of arylsulfonylalcanoids – synthesis, structure and comparative study. Acta Crystallographica Section B: Structural Science, 2008, 64, 760-770.	1.8	0
71	DimethylDL-2,3-dibenzyl-2,3-diisothiocyanatosuccinate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1025-o1025.	0.2	0