List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1299486/publications.pdf Version: 2024-02-01

YONG AN HUANG

#	Article	IF	CITATIONS
1	Theoretical Modeling of Conformal Criterion for Flexible Electronics Attached Onto Complex Surface. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	4
2	Flexible smart sensing skin for "Fly-by-Feel―morphing aircraft. Science China Technological Sciences, 2022, 65, 1-29.	2.0	28
3	Selfâ€Healing Kirigami Assembly Strategy for Conformal Electronics. Advanced Functional Materials, 2022, 32, 2109214.	7.8	34
4	Numerical investigation of high-frequency pulsating electrohydrodynamic jet at low electric Bond numbers. Physics of Fluids, 2022, 34, .	1.6	21
5	Electrohydrodynamically Printed Flexible Organic Memristor for Leaky Integrate and Fire Neuron. IEEE Electron Device Letters, 2022, 43, 116-119.	2.2	16
6	Experimental and modeling study of controllable laser lift-off via low-fluence multiscanning of polyimide-substrate interface. International Journal of Heat and Mass Transfer, 2022, 188, 122609.	2.5	8
7	Simulation analysis method of expandable and flexible sensor networks based on the flexible printed circuit process. Structural Health Monitoring, 2022, 21, 2670-2687.	4.3	2
8	Critical Size/Viscosity for Coffee-Ring-Free Printing of Perovskite Micro/Nanopatterns. ACS Applied Materials & Interfaces, 2022, 14, 14712-14720.	4.0	18
9	Recent progress in aircraft smart skin for structural health monitoring. Structural Health Monitoring, 2022, 21, 2453-2480.	4.3	26
10	Multifunctional Tactile Feedbacks Towards Compliant Robot Manipulations via 3D-Shaped Electronic Skin. IEEE Sensors Journal, 2022, 22, 9046-9056.	2.4	10
11	Chest-scale self-compensated epidermal electronics for standard 6-precordial-lead ECG. Npj Flexible Electronics, 2022, 6, .	5.1	5
12	Numerical analysis of electrohydrodynamic jet printing under constant and step change of electric voltages. Physics of Fluids, 2022, 34, .	1.6	20
13	A Snakeskinâ€Inspired, Softâ€Hinge Kirigami Metamaterial for Selfâ€Adaptive Conformal Electronic Armor. Advanced Materials, 2022, 34, .	11.1	29
14	3D Interfacing between Soft Electronic Tools and Complex Biological Tissues. Advanced Materials, 2021, 33, e2004425.	11.1	48
15	Nonlinear dynamic performance of buckled piezoelectric ribbon-substrate energy harvester. Composite Structures, 2021, 261, 113570.	3.1	8
16	Highâ€Resolution, Flexible, and Fullâ€Color Perovskite Image Photodetector via Electrohydrodynamic Printing of Ionicâ€Liquidâ€Based Ink. Advanced Functional Materials, 2021, 31, 2100857.	7.8	61
17	Template-Free Construction of Tin Oxide Porous Hollow Microspheres for Room-Temperature Gas Sensors. ACS Applied Materials & amp; Interfaces, 2021, 13, 25111-25120.	4.0	30
18	Highly Robust and Wearable Facial Expression Recognition via Deep-Learning-Assisted, Soft Epidermal Electronics. Research, 2021, 2021, 9759601.	2.8	16

#	Article	IF	CITATIONS
19	Programmable robotized â€~transfer-and-jet' printing for large, 3D curved electronics on complex surfaces. International Journal of Extreme Manufacturing, 2021, 3, 045101.	6.3	20
20	Enhancing pulsed electrohydrodynamic printing frequency via high-order-mode ejection. Physics of Fluids, 2021, 33, .	1.6	19
21	All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics. Npj Flexible Electronics, 2021, 5, .	5.1	36
22	Enhanced geometric precision of non-contact, conformal 3D printing via "error-transferred― towards jetting-direction. Precision Engineering, 2021, 72, 1-12.	1.8	5
23	Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy, 2021, 90, 106550.	8.2	55
24	Mechanically-compensated bending-strain measurement of multilayered paper-like electronics via surface-mounted sensor. Composite Structures, 2021, 277, 114652.	3.1	6
25	A machine learning approach to investigate the materials science of enamel aging. Dental Materials, 2021, 37, 1761-1771.	1.6	6
26	A circulant-matrix-based hybrid optical flow method for PIV measurement with large displacement. Experiments in Fluids, 2021, 62, 1.	1.1	6
27	Optofluidic Resonance of a Transparent Liquid Jet Excited by a Continuous Wave Laser. Physical Review Letters, 2021, 127, 244502.	2.9	12
28	Theoretical and experimental studies of laser lift-off of nonwrinkled ultrathin polyimide film for flexible electronics. Applied Surface Science, 2020, 499, 143910.	3.1	35
29	Roll-to-roll stack and lamination of gas diffusion layer in multilayer structured membrane electrode assembly. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234, 66-74.	1.5	8
30	Morphology-programmable self-aligned microlens array for light extraction via electrohydrodynamic printing. Organic Electronics, 2020, 87, 105969.	1.4	14
31	Laser-Induced Interfacial Spallation for Controllable and Versatile Delamination of Flexible Electronics. ACS Applied Materials & Interfaces, 2020, 12, 54230-54240.	4.0	15
32	Highâ€Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffeeâ€Ringâ€Free Quantum Dot Film. Advanced Materials Technologies, 2020, 5, 2000401.	3.0	44
33	Flexible PZT-Integrated, Bilateral Sensors via Transfer-Free Laser Lift-Off for Multimodal Measurements. ACS Applied Materials & Interfaces, 2020, 12, 37354-37362.	4.0	32
34	Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Science Advances, 2020, 6, .	4.7	99
35	Fabrication Techniques for Curved Electronics on Arbitrary Surfaces. Advanced Materials Technologies, 2020, 5, 2000093.	3.0	47
36	Conformable, programmable and step-linear sensor array for large-range wind pressure measurement	2.0	25

#	Article	IF	CITATIONS
37	Large deformation of a conductive nanodroplet in a strong electric field. Physics of Fluids, 2020, 32, 022006.	1.6	6
38	Active curved surface deforming of flexible conformal electronics by multi-fingered actuator. Robotics and Computer-Integrated Manufacturing, 2020, 64, 101942.	6.1	11
39	Electrohydrodynamically Printed Highâ€Resolution Full olor Hybrid Perovskites. Advanced Functional Materials, 2019, 29, 1903294.	7.8	97
40	Plasma-jet-assisted maskless, erasable, extreme wetting-contrast patterning on stretchable carbon nanotubes film. Applied Physics Express, 2019, 12, 115503.	1.1	6
41	Buckling of beams with finite prebuckling deformation. International Journal of Solids and Structures, 2019, 165, 148-159.	1.3	5
42	Advanced Electronic Packaging. , 2019, , 1-27.		1
43	Single-needle Peeling. , 2019, , 105-138.		0
44	Laser Transfer, Printing, and Assembly Techniques for Flexible Electronics. Advanced Electronic Materials, 2019, 5, 1800900.	2.6	91
45	Modeling and Application of Flexible Electronics Packaging. , 2019, , .		2
46	Assembly and applications of 3D conformal electronics on curvilinear surfaces. Materials Horizons, 2019, 6, 642-683.	6.4	141
47	Laser Lift-off. , 2019, , 201-225.		1
48	Interfacial Modeling of Flexible Multilayer Structures. , 2019, , 29-48.		0
49	Polygonal-feature-based shape context for flexible surface vision positioning. Measurement Science and Technology, 2019, 30, 055403.	1.4	4
50	Theoretical and experimental studies of electrostatic focusing for electrohydrodynamic jet printing. Journal of Micromechanics and Microengineering, 2019, 29, 065002.	1.5	14
51	Charged Satellite Drop Avoidance in Electrohydrodynamic Dripping. Micromachines, 2019, 10, 172.	1.4	5
52	Experimental study of laser lift-off of ultra-thin polyimide film for flexible electronics. Science China Technological Sciences, 2019, 62, 233-242.	2.0	30
53	Large-area, fully conformable, μm-thick e-tattoo for high-fidelity in situ personal health monitoring. , 2019, , .		1
54	Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. Journal of Materials Chemistry C, 2019, 7, 14867-14873.	2.7	38

#	Article	IF	CITATIONS
55	Tension-Assisted Peeling. , 2019, , 73-103.		Ο
56	Measurement of Fracture Strength of Ultra-thin Silicon Chip and Adhesive Fracture Energy. , 2019, , 49-71.		0
57	Multi-needle Peeling. , 2019, , 139-164.		0
58	Vacuum-Based Picking-up and Placing-on. , 2019, , 227-279.		1
59	Conformal Peeling. , 2019, , 165-200.		0
60	Large‣cale Directâ€Writing of Aligned Nanofibers for Flexible Electronics. Small, 2018, 14, e1703521.	5.2	126
61	Design and Development of a Spherical Motor for Conformal Printing of Curved Electronics. IEEE Transactions on Industrial Electronics, 2018, 65, 9190-9200.	5.2	49
62	Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts. Npj Flexible Electronics, 2018, 2, .	5.1	132
63	Electrohydrodynamic Direct-Writing for Flexible Electronic Manufacturing. , 2018, , .		18
64	Introduction of Electrohydrodynamic Printing. , 2018, , 1-29.		0
65	Mechano-electrospinning (MES). , 2018, , 31-65.		3
66	Helix Electrohydrodynamic Printing (HE-Printing). , 2018, , 67-88.		0
67	EHD Equipment and Applications. , 2018, , 157-194.		1
68	Inks for EHD Printing. , 2018, , 89-116.		2
69	Nozzles for EHD Printing. , 2018, , 117-132.		1
70	Evidence for Radiative Recombination of O ⁺ lons as a Significant Source of O 844.6 nm Emission Excitation. Journal of Geophysical Research: Space Physics, 2018, 123, 3078-3086.	0.8	0
71	Theoretical and Experimental Studies of Competing Fracture for Flexible Chip-Adhesive-Substrate Composite Structure. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 57-64.	1.4	12
72	Multichannel noninvasive human–machine interface via stretchable <i>µ</i> m thick sEMG patches for robot manipulation. Journal of Micromechanics and Microengineering, 2018, 28, 014005.	1.5	18

#	Article	IF	CITATIONS
73	Vertical fast electron bremsstrahlung diagnostic on J-TEXT tokamak. Review of Scientific Instruments, 2018, 89, 10F126.	0.6	3
74	Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing. Micromachines, 2018, 9, 522.	1.4	34
75	32.2: Multifunctional electrohydrodynamic printing and its industrial applications in flat panel display manufacturing. Digest of Technical Papers SID International Symposium, 2018, 49, 351-354.	0.1	2
76	The Conformal Design of an Island-Bridge Structure on a Non-Developable Surface for Stretchable Electronics. Micromachines, 2018, 9, 392.	1.4	33
77	Measurement of the toroidal radiation asymmetry during massive gas injection triggered disruptions on J-TEXT. Review of Scientific Instruments, 2018, 89, 10E113.	0.6	9
78	Stretchable Tactile and Bio-potential Sensors for Human-Machine Interaction: A Review. Lecture Notes in Computer Science, 2018, , 155-163.	1.0	3
79	Conformal Peeling of Device-on-Substrate System in Flexible Electronic Assembly. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1496-1506.	1.4	14
80	Impact Monitoring for Aircraft Smart Composite Skins Based on a Lightweight Sensor Network and Characteristic Digital Sequences. Sensors, 2018, 18, 2218.	2.1	40
81	Highâ€Performance, Micrometer Thick/Conformal, Transparent Metalâ€Network Electrodes for Flexible and Curved Electronic Devices. Advanced Materials Technologies, 2018, 3, 1800155.	3.0	36
82	Electromechanical Design of Self-Similar Inspired Surface Electrodes for Human-Machine Interaction. Complexity, 2018, 2018, 1-14.	0.9	8
83	Soft human–machine interfaces: design, sensing and stimulation. International Journal of Intelligent Robotics and Applications, 2018, 2, 313-338.	1.6	55
84	Control Method for EHD Printing. , 2018, , 133-156.		0
85	Stretchable Electronics: Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics (Adv.) Tj ETQq1 1 ().784314 11.1	rgBŢ /Overlo
86	A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding. Mechanical Systems and Signal Processing, 2017, 93, 634-644.	4.4	36
87	Theoretical and experimental study of 2D conformability of stretchable electronics laminated onto skin. Science China Technological Sciences, 2017, 60, 1415-1422.	2.0	31
88	Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics. Advanced Materials, 2017, 29, 1604989.	11.1	141
89	Weld quality monitoring research in small scale resistance spot welding by dynamic resistance and neural network. Measurement: Journal of the International Measurement Confederation, 2017, 99, 120-127.	2.5	47
90	Fabrication and evaluation of a protruding Si-based printhead for electrohydrodynamic jet printing. Journal of Micromechanics and Microengineering, 2017, 27, 125004.	1.5	17

#	Article	IF	CITATIONS
91	Flexible small-channel thin-film transistors by electrohydrodynamic lithography. Nanoscale, 2017, 9, 19050-19057.	2.8	36
92	Buckling-driven self-assembly of self-similar inspired micro/nanofibers for ultra-stretchable electronics. Soft Matter, 2017, 13, 7244-7254.	1.2	25
93	Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electrohydrodynamic nanowire template for enhanced gas-sensing properties. Scientific Reports, 2017, 7, 12206.	1.6	37
94	Optimal design of self-similar serpentine interconnects embedded in stretchable electronics. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	19
95	Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy, 2017, 40, 432-439.	8.2	150
96	Wearable human–machine interface based on PVDF piezoelectric sensor. Transactions of the Institute of Measurement and Control, 2017, 39, 398-403.	1.1	56
97	Helix Electrohydrodynamic Printing of Highly Aligned Serpentine Micro/Nanofibers. Polymers, 2017, 9, 434.	2.0	37
98	Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers. Polymers, 2017, 9, 714.	2.0	26
99	Stretchable, Highly Durable Ternary Nanocomposite Strain Sensor for Structural Health Monitoring of Flexible Aircraft. Sensors, 2017, 17, 2677.	2.1	77
100	Opportunities and Challenges in Flexible and Stretchable Electronics: A Panel Discussion at ISFSE2016. Micromachines, 2017, 8, 129.	1.4	8
101	Stretchable sEMG Electrodes Conformally Laminated on Skin for Continuous Electrophysiological Monitoring. Lecture Notes in Computer Science, 2017, , 77-86.	1.0	5
102	High-rate roll-to-roll stack and lamination of multilayer structured membrane electrode assembly. Journal of Manufacturing Processes, 2016, 23, 175-182.	2.8	26
103	Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Advanced Materials, 2016, 28, 9881-9919.	11.1	407
104	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 2016, 8, 366ra165.	5.8	933
105	Analytical investigation on thermal-induced warpage behavior of ultrathin chip-on-flex (UTCOF) assembly. Science China Technological Sciences, 2016, 59, 1646-1655.	2.0	5
106	Addressable multi-nozzle electrohydrodynamic jet printing with high consistency by multi-level voltage method. AIP Advances, 2015, 5, .	0.6	28
107	Near-field behavior of electrified jet under moving substrate constrains. AIP Advances, 2015, 5, .	0.6	20
108	Nonlinear characteristics in fracture strength test of ultrathin silicon die. Semiconductor Science and Technology, 2015, 30, 045005.	1.0	22

#	Article	IF	CITATIONS
109	High-performance transition metal–doped Pt ₃ Ni octahedra for oxygen reduction reaction. Science, 2015, 348, 1230-1234.	6.0	1,623
110	Analytical Evaluation of Interfacial Crack Propagation in Vacuum-Based Picking-up Process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1700-1708.	1.4	11
111	Soft microfluidic neural probes for wireless drug delivery in freely behaving mice. , 2015, , .		3
112	Competing Fracture of Thin-Chip Transferring From/Onto Prestrained Compliant Substrate. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	9
113	Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.	6.0	745
114	Self-similar design for stretchable wireless LC strain sensors. Sensors and Actuators A: Physical, 2015, 224, 36-42.	2.0	66
115	A patterned ZnO nanorod array/gas sensor fabricated by mechanoelectrospinning-assisted selective growth. Chemical Communications, 2015, 51, 3117-3120.	2.2	41
116	Competing buckling of micro/nanowires on compliant substrates. Journal Physics D: Applied Physics, 2015, 48, 045302.	1.3	16
117	Reduced Magnetization and Loss in Ag–Mg Sheathed Bi2212 Wires: Systematics With Sample Twist Pitch and Length. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.1	9
118	Vacuum-based picking-up of thin chip from adhesive tape. Journal of Adhesion Science and Technology, 2015, 29, 1315-1329.	1.4	14
119	Electrohydrodynamically Printed, Flexible Energy Harvester Using Inâ€Situ Poled Piezoelectric Nanofibers. Energy Technology, 2015, 3, 351-358.	1.8	38
120	A comprehensive analysis of the growth rate of stress corrosion cracks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140703.	1.0	10
121	Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays. Journal of Materials Chemistry C, 2015, 3, 11397-11405.	2.7	105
122	Elasticity of Fractal Inspired Interconnects. Small, 2015, 11, 367-373.	5.2	84
123	Experimental estimation of adhesive fracture energy of compliant adhesive tape. , 2014, , .		9
124	Tunable Peeling Technique and Mechanism of Thin Chip From Compliant Adhesive Tapes. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4, 560-568.	1.4	27
125	Reliable Peeling of Ultrathin Die With Multineedle Ejector. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4, 1545-1554.	1.4	25
126	Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale, 2014, 6, 3289.	2.8	129

#	Article	IF	CITATIONS
127	Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12998-13003.	3.3	197
128	Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nature Communications, 2014, 5, 4496.	5.8	757
129	Freestanding Graphene Paper Supported Three-Dimensional Porous Graphene–Polyaniline Nanocomposite Synthesized by Inkjet Printing and in Flexible All-Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2014, 6, 16312-16319.	4.0	312
130	Microfluidic serpentine antennas with designed mechanical tunability. Lab on A Chip, 2014, 14, 4205-4212.	3.1	84
131	Process Optimization of Mechano-Electrospinning by Response Surface Methodology. Journal of Nanoscience and Nanotechnology, 2014, 14, 3464-3472.	0.9	12
132	A general solution for the two-dimensional stress analysis of balanced and unbalanced adhesively bonded joints. International Journal of Adhesion and Adhesives, 2014, 54, 112-123.	1.4	56
133	Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers. Scientific Reports, 2014, 4, 5949.	1.6	70
134	Transfer printing and patterning of stretchable electrospun film. Thin Solid Films, 2013, 544, 152-156.	0.8	8
135	Electrohydrodynamic direct-writing. Nanoscale, 2013, 5, 12007.	2.8	202
136	Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science, 2013, 340, 211-216.	6.0	1,010
137	Cohesive failure analysis of an array of IC chips bonded to a stretched substrate. International Journal of Solids and Structures, 2013, 50, 3528-3538.	1.3	23
138	Fabrication of Si-nozzles for parallel mechano-electrospinning direct writing. Journal Physics D: Applied Physics, 2013, 46, 255301.	1.3	19
139	A Viscoelastic Model for the Rate Effect in Transfer Printing. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	34
140	Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19910-19915.	3.3	209
141	The Micro-Indentation Detection of Multilayer Structured Transparent Film Based on Dark Field Illumination. Applied Mechanics and Materials, 2012, 217-219, 1043-1048.	0.2	1
142	Competing Fracture Modeling of Thin Chip Pick-Up Process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2, 1217-1225.	1.4	30
143	Continuously Tunable and Oriented Nanofiber Direct-Written by Mechano-Electrospinning. Materials and Manufacturing Processes, 2012, 27, 1318-1323.	2.7	78
144	A Physically Transient Form of Silicon Electronics. Science, 2012, 337, 1640-1644.	6.0	1,085

#	Article	IF	CITATIONS
145	Offâ€fault tensile cracks: A link between geological fault observations, lab experiments, and dynamic rupture models. Journal of Geophysical Research, 2012, 117, .	3.3	34
146	Driving force planning in shield tunneling based on Markov decision processes. Science China Technological Sciences, 2012, 55, 1022-1030.	2.0	11
147	Tunable bead-on-string microstructures fabricated by mechano-electrospinning. Journal Physics D: Applied Physics, 2012, 45, 405301.	1.3	26
148	Controllable self-organization of colloid microarrays based on finite length effects of electrospun ribbons. Soft Matter, 2012, 8, 8302.	1.2	49
149	Tool path generation for triangular meshes using least-squares conformal map. International Journal of Production Research, 2011, 49, 3653-3667.	4.9	11
150	Roll-to-Roll Processing of Flexible Heterogeneous Electronics With Low Interfacial Residual Stress. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, 1368-1377.	1.4	40
151	Epidermal Electronics. Science, 2011, 333, 838-843.	6.0	3,944
152	Climatology of the nighttime equatorial thermospheric winds and temperatures over Brazil near solar minimum. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	67
153	Analysis of interfacial peeling in IC chip pick-up process. Journal of Applied Physics, 2011, 110, .	1.1	37
154	An analytical model of strain isolation for stretchable and flexible electronics. Applied Physics Letters, 2011, 98, .	1.5	45
155	Stretchability of encapsulated electronics. Applied Physics Letters, 2011, 99, 061911.	1.5	20
156	Tool-Path Generation Based on Angle-Based Flattening. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224, 1503-1509.	1.5	7
157	Inkjet printing for flexible electronics: Materials, processes and equipments. Science Bulletin, 2010, 55, 3383-3407.	1.7	249
158	Thermomechanical analysis of thin films on temperature-dependent elastomeric substrates in flexible heterogeneous electronics. Thin Solid Films, 2010, 518, 1698-1702.	0.8	18
159	Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates. Nanotechnology, 2010, 21, 085708.	1.3	56
160	A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology. Science Translational Medicine, 2010, 2, 24ra22.	5.8	344
161	Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17095-17100.	3.3	356
162	Thermomechanical Analysis of Film-on-Substrate System With Temperature-Dependent Properties. Journal of Applied Mechanics, Transactions ASME, 2010, 77, .	1.1	12

#	Article	IF	CITATIONS
163	Materials and Mechanics for Stretchable Electronics. Science, 2010, 327, 1603-1607.	6.0	4,135
164	Mechanics of stretchable inorganic electronic materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1107-1125.	0.9	105
165	The equivalence of axisymmetric indentation model for three-dimensional indentation hardness. Journal of Materials Research, 2009, 24, 776-783.	1.2	11
166	Mechanics of noncoplanar mesh design for stretchable electronic circuits. Journal of Applied Physics, 2009, 105, .	1.1	143
167	Dynamics of water debinding in ceramic injection moulding. Advances in Applied Ceramics, 2009, 108, 295-300.	0.6	10
168	Internal resonance of vibrational modes in single-walled carbon nanotubes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 3069-3082.	1.0	11
169	A curvy, stretchy future for electronics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10875-10876.	3.3	213
170	A Novel Force Control Method for Quasi-Static Underactuated Multibody Systems. Advanced Robotics, 2009, 23, 1249-1260.	1.1	5
171	Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays. Science, 2009, 325, 977-981.	6.0	748
172	Continuum modeling of van der Waals interactions between carbon nanotube walls. Applied Physics Letters, 2009, 94, .	1.5	35
173	An Improved Model of Loads Acting on Shield. Lecture Notes in Computer Science, 2009, , 364-373.	1.0	0
174	Material and structural instabilities of single-wall carbon nanotubes. Acta Mechanica Sinica/Lixue Xuebao, 2008, 24, 285-288.	1.5	5
175	Buckling of a stiff thin film on a compliant substrate in large deformation. International Journal of Solids and Structures, 2008, 45, 3107-3121.	1.3	234
176	An analytical study of two-dimensional buckling of thin films on compliant substrates. Journal of Applied Physics, 2008, 103, .	1.1	133
177	Force Planning for Underground Articulated Robot. Lecture Notes in Computer Science, 2008, , 64-74.	1.0	2
178	A Finite-Deformation Shell Theory for Carbon Nanotubes Based on the Interatomic Potential—Part II: Instability Analysis. Journal of Applied Mechanics, Transactions ASME, 2008, 75, .	1.1	8
179	Detaching speed of a fibrillar interface. Applied Physics Letters, 2008, 93, 103901.	1.5	0
180	Stretchable and compressible thin films of stiff materials on compliant wavy substrates. Applied Physics Letters, 2008, 93, 013109.	1.5	80

#	Article	IF	CITATIONS
181	Measurement of radial deformation of single-wall carbon nanotubes induced by intertube van der Waals forces. Physical Review B, 2008, 77, .	1.1	23
182	Mechanics of buckled carbon nanotubes on elastomeric substrates. Journal of Applied Physics, 2008, 104, 033543.	1.1	60
183	ADHESION BETWEEN CARBON NANOTUBES AND SUBSTRATE: MIMICKING THE GECKO FOOT-HAIR. Nano, 2007, 02, 175-179.	0.5	13
184	A Three-Dimensional Strain Gradient Plasticity Analysis of Particle Size Effect in Composite Materials. Materials and Manufacturing Processes, 2007, 22, 140-148.	2.7	19
185	Extension of Stoney's Formula to Arbitrary Temperature Distributions in Thin Film/Substrate Systems. Journal of Applied Mechanics, Transactions ASME, 2007, 74, 1225-1233.	1.1	23
186	On the Stoney Formula for a Thin Film/Substrate System With Nonuniform Substrate Thickness. Journal of Applied Mechanics, Transactions ASME, 2007, 74, 1276-1281.	1.1	108
187	Finite deformation mechanics in buckled thin films on compliant supports. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15607-15612.	3.3	626
188	Effect of Heat Treatment and Thermochemical Treatment on Linear Recovery Property of TiNi Shape Memory Alloy. Advanced Engineering Materials, 2006, 8, 107-111.	1.6	0
189	Effect of plasticizer on the cracking of ceramic green bodies in gelcasting. Journal of Materials Science, 2005, 40, 4947-4949.	1.7	23
190	Collapse of stamps for soft lithography due to interfacial adhesion. Applied Physics Letters, 2005, 86, 154106.	1.5	101
191	Mechanism for stamp collapse in soft lithography. Applied Physics Letters, 2005, 87, 251925.	1.5	59
192	Abnormal Tribological Behavior of Multiwalled Nanotube Rafts Part II: Inclined Rafts. Journal of Engineering Materials and Technology, Transactions of the ASME, 2005, 127, 393-399.	0.8	3
193	A Finite-Temperature Continuum Theory Based on Interatomic Potentials. Journal of Engineering Materials and Technology, Transactions of the ASME, 2005, 127, 408-416.	0.8	77
194	Abnormal Tribological Behavior of Multiwalled Nanotube Rafts Part I: Aligned Rafts. Journal of Engineering Materials and Technology, Transactions of the ASME, 2005, 127, 383-392.	0.8	4
195	Indenter tip radius effect on the Nix–Gao relation in micro- and nanoindentation hardness experiments. Journal of Materials Research, 2004, 19, 3423-3434.	1.2	102
196	Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity. International Journal of Fracture, 2004, 129, 199-220.	1.1	65
197	Thermal Expansion of Single Wall Carbon Nanotubes. Journal of Engineering Materials and Technology, Transactions of the ASME, 2004, 126, 265-270.	0.8	281
198	The Transport Properties of Bi-Riched Bi2Sr2CuO6+δSingle Crystal. Journal of Low Temperature Physics, 2003, 131, 865-869.	0.6	0

#	ARTICLE	IF	CITATIONS
199	A fast triangulation algorithm for 3D reconstruction from planar contours. International Journal of Advanced Manufacturing Technology, 2003, -1, 1-1.	1.5	1
200	Binding energy of parallel carbon nanotubes. Applied Physics Letters, 2003, 83, 3570-3571.	1.5	71
201	Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials. Journal of Applied Mechanics, Transactions ASME, 2002, 69, 454-458.	1.1	111
202	The Influence of Indenter Tip Radius on the Micro-Indentation Hardness. Journal of Engineering Materials and Technology, Transactions of the ASME, 2002, 124, 371-379.	0.8	96
203	Intersonic Crack Propagation—Part II: Suddenly Stopping Crack. Journal of Applied Mechanics, Transactions ASME, 2002, 69, 76-80.	1.1	24
204	An Alternative Decomposition of the Strain Gradient Tensor. Journal of Applied Mechanics, Transactions ASME, 2002, 69, 139-141.	1.1	1
205	Intersonic Crack Propagation—Part I: The Fundamental Solution. Journal of Applied Mechanics, Transactions ASME, 2001, 68, 169-175.	1.1	52
206	The boundary-layer effect on the crack tip field in mechanism-based strain gradient plasticity. International Journal of Fracture, 2001, 112, 23-41.	1.1	55
207	Plane-Stress Deformation in Strain Gradient Plasticity. Journal of Applied Mechanics, Transactions ASME, 2000, 67, 105-111.	1.1	5
208	A Study of Microindentation Hardness Tests by Mechanism-based Strain Gradient Plasticity. Journal of Materials Research, 2000, 15, 1786-1796.	1.2	206
209	Modeling Plasticity at the Micrometer Scale. Die Naturwissenschaften, 1999, 86, 507-515.	0.6	196
210	Fracture in strain gradient elasticity. Metals and Materials International, 1998, 4, 593-600.	0.2	9
211	Thermal Stresses in Layered Electronic Assemblies. Journal of Electronic Packaging, Transactions of the ASME, 1997, 119, 127-132.	1.2	106
212	Paramagnetic resonance of platinum ions in PbTiO3single crystals. Applied Physics Letters, 1993, 62, 146-148.	1.5	13
213	Optically Induced Paramagnetic Defects in PbTiO3 Single Crystals. Materials Research Society Symposia Proceedings, 1993, 310, 391.	0.1	3
214	Interfacial shear stress, peeling stress, and die cracking stress in trilayer electronic assemblies. , 0, , .		10
215	The Effect of Substrate on Continuous Electrohydrodynamic Printing. Advanced Materials Research, 0, 684, 352-356.	0.3	8