Yuchi Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1299408/publications.pdf Version: 2024-02-01

<u>ΥΠCΗΙ ΕΛΝ</u>

#	Article	IF	CITATIONS
1	Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications. Small Science, 2022, 2, 2100047.	9.9	35
2	Highly Improved Microwave Absorbing and Mechanical Properties in Cold Sintered ZnO by Incorporating Graphene Oxide. Journal of the European Ceramic Society, 2022, 42, 993-1000.	5.7	31
3	Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 106, 108-117.	10.7	54
4	Structural evolution mechanism during 3D printing of MXene-reinforced metal matrix composites. Composites Communications, 2022, 29, 101034.	6.3	16
5	Mechanically exfoliated MoS2 nanoflakes for optimizing the thermoelectric performance of SrTiO3-based ceramic composites. Journal of Materiomics, 2022, 8, 790-798.	5.7	7
6	Mechanically and environmentally robust composite nanofibers with embedded MXene for wearable shielding of electromagnetic wave. Composites Communications, 2022, 30, 101094.	6.3	17
7	Highly ordered mesoporous 1T' MoTe2/m-SiO2 composite as efficient microwave absorber. Microporous and Mesoporous Materials, 2022, , 111894.	4.4	3
8	Integrating thin wall into block: A new scanning strategy for laser powder bed fusion of dense tungsten. Journal of Materials Science and Technology, 2022, 120, 167-171.	10.7	1
9	Self-organization of unimolecular micelles in beam stream for functional mesoporous metal oxide nanofibers. Fundamental Research, 2022, 2, 776-782.	3.3	2
10	A Robust Hierarchical MXene/Ni/Aluminosilicate Glass Composite for Highâ€Performance Microwave Absorption. Advanced Science, 2022, 9, e2104163.	11.2	29
11	Enhanced thermoelectric composite performance from graphene nanosheets additives in AgSbTe2 matrix. Ceramics International, 2022, , .	4.8	3
12	Modulating electromagnetic interference shielding performance of ultra-lightweight composite foams through shape memory function. Composites Part B: Engineering, 2021, 204, 108497.	12.0	74
13	A confined micro-reactor with a movable Fe3O4 core and a mesoporous TiO2 shell for a photocatalytic Fenton-like degradation of bisphenol A. Chinese Chemical Letters, 2021, 32, 1456-1461.	9.0	27
14	Graphene controlled phase evolution in Sr-deficient Sr(Ti, Nb)O3 thermoelectric ceramics. Journal of Materiomics, 2021, 7, 366-376.	5.7	11
15	Multi-functional and highly conductive textiles with ultra-high durability through â€~green' fabrication process. Chemical Engineering Journal, 2021, 406, 127140.	12.7	72
16	Achieving effective broadband microwave absorption with Fe3O4@C supraparticles. Journal of Materiomics, 2021, 7, 80-88.	5.7	29
17	Sub-nanometric Manganous Oxide Clusters in Nitrogen Doped Mesoporous Carbon Nanosheets for High-Performance Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 700-708.	9.1	60
18	Mesoporous Materials–Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. Small, 2021, 17, e1904022.	10.0	49

Үисні Ғам

#	Article	IF	CITATIONS
19	Simultaneous enhancement of dispersion and interfacial adhesion in Al matrix composites reinforced with nanoceramic-decorated carbon nanotubes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140784.	5.6	11
20	Ultraâ€low temperature preparation of mullite glassâ€ceramics with high transparency sintered from EMTâ€type zeolite. Journal of the American Ceramic Society, 2021, 104, 3158-3166.	3.8	6
21	Oriented assembly of monomicelles in beam stream enabling bimodal mesoporous metal oxide nanofibers. Science China Materials, 2021, 64, 2486-2496.	6.3	6
22	In-Situ Reduction of Mo-Based Composite Particles during Laser Powder Bed Fusion. Crystals, 2021, 11, 702.	2.2	4
23	Incorporating Cobalt Nanoparticles in Nitrogen-Doped Mesoporous Carbon Spheres through Composite Micelle Assembly for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38604-38612.	8.0	17
24	Nanoplates forced alignment of multi-walled carbon nanotubes in alumina composite with high strength and toughness. Journal of the European Ceramic Society, 2021, 41, 5541-5547.	5.7	9
25	Visualization and Quantification of Electrochemical H ₂ Bubble Nucleation at Pt, Au, and MoS ₂ Substrates. ACS Sensors, 2021, 6, 355-363.	7.8	48
26	Significant strengthening effect in few-layered MXene-reinforced Al matrix composites. Materials Research Letters, 2021, 9, 148-154.	8.7	22
27	Enhanced TE properties of Cu@Ag/Bi2Te3 nanocomposites by decoupling electrical and thermal properties. Chinese Chemical Letters, 2020, 31, 880-884.	9.0	18
28	Highâ€Efficiency Thermoelectric Power Generation Enabled by Homogeneous Incorporation of MXene in (Bi,Sb) ₂ Te ₃ Matrix. Advanced Energy Materials, 2020, 10, 1902986.	19.5	109
29	Simultaneously Breaking the Double Schottky Barrier and Phonon Transport in SrTiO3-Based Thermoelectric Ceramics via Two-Step Reduction. ACS Applied Materials & Interfaces, 2020, 12, 52721-52730.	8.0	20
30	Interfacial engineering of core-shell structured mesoporous architectures from single-micelle building blocks. Nano Today, 2020, 35, 100940.	11.9	12
31	Core-rim structured carbide MXene/SiO2 nanoplates as an ultrathin microwave absorber. Carbon, 2020, 169, 214-224.	10.3	57
32	Confined interfacial micelle aggregating assembly of ordered macro–mesoporous tungsten oxides for H ₂ S sensing. Nanoscale, 2020, 12, 20811-20819.	5.6	15
33	Liquidâ€Phase Assisted Engineering of Highly Strong SiC Composite Reinforced by Multiwalled Carbon Nanotubes. Advanced Science, 2020, 7, 2002225.	11.2	11
34	Enhancement in sintering driving force derived from in situ ordered structural collapse of mesoporous powders. Journal of the American Ceramic Society, 2020, 103, 5654-5663.	3.8	12
35	MoS2 coating on CoSx-embedded nitrogen-doped-carbon-nanosheets grown on carbon cloth for energy conversion. Journal of Alloys and Compounds, 2019, 806, 1276-1284.	5.5	10
36	Hierarchical Branched Mesoporous TiO ₂ –SnO ₂ Nanocomposites with Wellâ€Defined n–n Heterojunctions for Highly Efficient Ethanol Sensing. Advanced Science, 2019, 6, 1902008.	11.2	84

ΥUCHI FAN

#	Article	IF	CITATIONS
37	Structural evolution of multi-walled carbon nanotubes during the consolidation of Al matrix composites. Materials Letters, 2019, 257, 126731.	2.6	4
38	Synthesis of freestanding PEDOT:PSS/PVA@Ag NPs nanofiber film for high-performance flexible thermoelectric generator. Polymer, 2019, 167, 102-108.	3.8	55
39	Carbon-Encapsulated Copper Sulfide Leading to Enhanced Thermoelectric Properties. ACS Applied Materials & Interfaces, 2019, 11, 22457-22463.	8.0	45
40	Facile synthesis of mesoporous WO3@graphene aerogel nanocomposites for low-temperature acetone sensing. Chinese Chemical Letters, 2019, 30, 2032-2038.	9.0	33
41	Thermal expansion behaviors of few-layered graphene-reinforced Al matrix composites. Journal of Alloys and Compounds, 2019, 792, 988-993.	5.5	16
42	Mesoporous WO3 Nanofibers With Crystalline Framework for High-Performance Acetone Sensing. Frontiers in Chemistry, 2019, 7, 266.	3.6	32
43	Microstructure and composition engineering Yb single-filled CoSb3 for high thermoelectric and mechanical performances. Journal of Materiomics, 2019, 5, 702-710.	5.7	23
44	Structurally nanocrystalline electrically monocrystalline Sb2Te3 with high thermoelectric performance. Scripta Materialia, 2019, 166, 81-86.	5.2	9
45	The effect of reduced graphene oxide on microstructure and thermoelectric properties of Nb-doped A-site-deficient SrTiO3 ceramics. Journal of Alloys and Compounds, 2019, 786, 884-893.	5.5	55
46	Ultrathin and Light-Weight Graphene Aerogel with Precisely Tunable Density for Highly Efficient Microwave Absorbing. ACS Applied Materials & Interfaces, 2019, 11, 46386-46396.	8.0	97
47	Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance. Scripta Materialia, 2019, 162, 166-171.	5.2	46
48	Interfacial reaction induced efficient load transfer in few-layer graphene reinforced Al matrix composites for high-performance conductor. Composites Part B: Engineering, 2019, 167, 93-99.	12.0	122
49	Effectively enhanced thermopower in polyaniline/Bi0.5Sb1.5Te3 nanoplate composites via carrier energy scattering. Journal of Materials Science, 2018, 53, 6752-6762.	3.7	22
50	Preparation of monophasic titanium sub-oxides of Magnéli phase with enhanced thermoelectric performance. Journal of the European Ceramic Society, 2018, 38, 507-513.	5.7	23
51	Enhancing the thermoelectric performance of filled skutterudite nanocomposites in a wide temperature range via electroless silver plating. Scripta Materialia, 2018, 146, 136-141.	5.2	11
52	Electrically Conductive and Mechanically Strong Graphene/Mullite Ceramic Composites for High-Performance Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 39245-39256.	8.0	64
53	Creation of individual few-layer graphene incorporated in an aluminum matrix. Composites Part A: Applied Science and Manufacturing, 2018, 112, 168-177.	7.6	76
54	Niâ€Fe Nitride Nanoplates on Nitrogenâ€Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Znâ€Air Battery. Small, 2017, 13, 1700099.	10.0	151

Υυςηι Γαν

#	Article	IF	CITATIONS
55	Amorphous TiO ₂ Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for Highâ€Performance and Safe Lithium Storage. Advanced Materials, 2017, 29, 1700523.	21.0	342
56	Enhancing the performance of Ce:YAG phosphor-in-silica-glass by controlling interface reaction. Acta Materialia, 2017, 130, 289-296.	7.9	58
57	Origin of ultraviolet photoluminescence in zeolite-derived glass. Journal of Non-Crystalline Solids, 2017, 471, 462-466.	3.1	3
58	Graphene promoted oxygen vacancies in perovskite for enhanced thermoelectric properties. Carbon, 2017, 112, 169-176.	10.3	76
59	In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites. Carbon, 2016, 106, 37-47.	10.3	93
60	Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon, 2016, 96, 919-928.	10.3	195
61	Highly strain tolerant and tough ceramic composite by incorporation of graphene. Carbon, 2015, 90, 274-283.	10.3	31
62	Control of doping by matrix in few-layer graphene/metal oxide composites with highly enhanced electrical conductivity. Carbon, 2015, 81, 83-90.	10.3	39
63	The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites. Journal of the European Ceramic Society, 2014, 34, 443-451.	5.7	85
64	Highly Conductive Few‣ayer Graphene/Al ₂ O ₃ Nanocomposites with Tunable Charge Carrier Type. Advanced Functional Materials, 2012, 22, 3882-3889.	14.9	145
65	Is black iron oxide nanoparticle always a light absorber?. Journal of Materials Chemistry, 2011, 21, 7990.	6.7	7
66	Mechanical properties and bioactivity of β-Ca2SiO4 ceramics synthesized by spark plasma sintering. Ceramics International, 2011, 37, 2459-2465.	4.8	41
67	A microexplosion method for the synthesis of graphene nanoribbons. Carbon, 2011, 49, 1439-1445.	10.3	12
68	Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon, 2010, 48, 1743-1749.	10.3	315