Sylvia C Hewitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1299123/publications.pdf

Version: 2024-02-01

66315 85498 6,007 77 42 71 citations h-index g-index papers 80 80 80 6459 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Postnatal Sex Reversal of the Ovaries in Mice Lacking Estrogen Receptors and . Science, 1999, 286, 2328-2331.	6.0	540
2	Abolition of male sexual behaviors in mice lacking estrogen receptors alpha and beta (alpha beta) Tj ETQq0 0 0 rg	BT /Overlo 3.3	ock 10 Tf 50 7 266
3	LESSONS IN ESTROGEN BIOLOGY FROM KNOCKOUT AND TRANSGENIC ANIMALS. Annual Review of Physiology, 2005, 67, 285-308.	5.6	262
4	Requirement of Estrogen Receptor-α in Insulin-like Growth Factor-1 (IGF-1)-induced Uterine Responses and in Vivo Evidence for IGF-1/Estrogen Receptor Cross-talk. Journal of Biological Chemistry, 2002, 277, 8531-8537.	1.6	251
5	Estrogen Receptor-Dependent Genomic Responses in the Uterus Mirror the Biphasic Physiological Response to Estrogen. Molecular Endocrinology, 2003, 17, 2070-2083.	3.7	233
6	Oestrogen receptor knockout mice: roles for oestrogen receptors alpha and beta in reproductive tissues. Reproduction, 2003, 125, 143-149.	1.1	218
7	Uterine epithelial estrogen receptor \hat{l}_{\pm} is dispensable for proliferation but essential for complete biological and biochemical responses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19272-19277.	3.3	197
8	Induction of Mammary Gland Development in Estrogen Receptor-α Knockout Mice. Endocrinology, 2000, 141, 2982-2994.	1.4	189
9	Estrogen Hormone Biology. Current Topics in Developmental Biology, 2017, 125, 109-146.	1.0	186
10	FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis. Development (Cambridge), 2010, 137, 2045-2054.	1.2	184
11	Skeletal muscle action of estrogen receptor \hat{l}_{\pm} is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Science Translational Medicine, 2016, 8, 334ra54.	5.8	174
12	Estrogen Receptors: New Directions in the New Millennium. Endocrine Reviews, 2018, 39, 664-675.	8.9	164
13	Myeloid-specific estrogen receptor $\hat{l}\pm$ deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16457-16462.	3.3	147
14	Receptor null mice reveal contrasting roles for estrogen receptor \hat{l}_{\pm} and \hat{l}^{2} in reproductive tissues. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 287-296.	1.2	140
15	Extranuclear estrogen receptor- \hat{l}_{\pm} stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13057-13062.	3.3	122
16	Estrogen receptor transcription and transactivation Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action. Breast Cancer Research, 2000, 2, 345-52.	2.2	118
17	Estrogen receptors: structure, mechanisms and function. Reviews in Endocrine and Metabolic Disorders, 2002, 3, 193-200.	2.6	118
18	Biological and biochemical consequences of global deletion of exon 3 from the ER $\hat{l}\pm$ gene. FASEB Journal, 2010, 24, 4660-4667.	0.2	116

#	Article	IF	CITATIONS
19	Role of Estrogen Receptor Signaling Required for Endometriosis-Like Lesion Establishment in a Mouse Model. Endocrinology, 2012, 153, 3960-3971.	1.4	110
20	Estrogen-induced Proliferation of Uterine Epithelial Cells Is Independent of Estrogen Receptor α Binding to Classical Estrogen Response Elements. Journal of Biological Chemistry, 2006, 281, 26683-26692.	1.6	109
21	Research Resource: Whole-Genome Estrogen Receptor α Binding in Mouse Uterine Tissue Revealed by ChIP-Seq. Molecular Endocrinology, 2012, 26, 887-898.	3.7	109
22	Activation of a Uterine Insulin-Like Growth Factor I Signaling Pathway by Clinical and Environmental Estrogens: Requirement of Estrogen Receptor-α. Endocrinology, 2000, 141, 3430-3439.	1.4	106
23	Studies Using the Estrogen Receptor $\hat{l}\pm$ Knockout Uterus Demonstrate That Implantation but Not Decidualization-Associated Signaling Is Estrogen Dependent. Biology of Reproduction, 2002, 67, 1268-1277.	1.2	105
24	Estrogen-mediated Regulation of Igf1 Transcription and Uterine Growth Involves Direct Binding of Estrogen Receptor $\hat{I}\pm$ to Estrogen-responsive Elements. Journal of Biological Chemistry, 2010, 285, 2676-2685.	1.6	105
25	What's new in estrogen receptor action in the female reproductive tract. Journal of Molecular Endocrinology, 2016, 56, R55-R71.	1.1	103
26	Update on animal models developed for analyses of estrogen receptor biological activity. Journal of Steroid Biochemistry and Molecular Biology, 2003, 86, 387-391.	1.2	84
27	Estrogen receptor $\hat{l}\pm$ protects pancreatic \hat{l}^2 -cells from apoptosis by preserving mitochondrial function and suppressing endoplasmic reticulum stress. Journal of Biological Chemistry, 2018, 293, 4735-4751.	1.6	70
28	An Estrogen Receptor-α Knock-In Mutation Provides Evidence of Ligand-Independent Signaling and Allows Modulation of Ligand-Induced Pathways in Vivo. Endocrinology, 2008, 149, 2970-2979.	1.4	69
29	SIGNAL TRANSDUCTION: A New Mediator for an Old Hormone?. Science, 2005, 307, 1572-1573.	6.0	67
30	Oviductal estrogen receptor α signaling prevents protease-mediated embryo death. ELife, 2015, 4, e10453.	2.8	67
31	Estradiol Regulates the Thioredoxin Antioxidant System in the Mouse Uterus. Endocrinology, 2004, 145, 5485-5492.	1.4	66
32	Global Uterine Genomics in Vivo: Microarray Evaluation of the Estrogen Receptor α-Growth Factor Cross-Talk Mechanism. Molecular Endocrinology, 2005, 19, 657-668.	3.7	64
33	Estrogen receptor $\hat{l}\pm$ controls metabolism in white and brown adipocytes by regulating <i>Polg1</i> and mitochondrial remodeling. Science Translational Medicine, 2020, 12, .	5.8	64
34	Hormone signaling and fatty liver in females: analysis of estrogen receptor \hat{l}_{\pm} mutant mice. International Journal of Obesity, 2017, 41, 945-954.	1.6	63
35	Estrogen Receptor (ER)α-regulated Lipocalin 2 Expression in Adipose Tissue Links Obesity with Breast Cancer Progression. Journal of Biological Chemistry, 2015, 290, 5566-5581.	1.6	61
36	Estrogens Promote Misfolded Proinsulin Degradation to Protect Insulin Production and Delay Diabetes. Cell Reports, 2018, 24, 181-196.	2.9	61

#	Article	IF	CITATIONS
37	Diarylheptanoid Phytoestrogens Isolated from the Medicinal Plant ⟨i⟩Curcuma comosa⟨/i⟩: Biologic Actions ⟨i⟩in Vitro⟨/i⟩ and ⟨i⟩in Vivo⟨/i⟩ Indicate Estrogen Receptor–Dependent Mechanisms. Environmental Health Perspectives, 2009, 117, 1155-1161.	2.8	60
38	Biological and biochemical consequences of global deletion of exon 3 from the ERÎ \pm gene. FASEB Journal, 2010, 24, 4660-4667.	0.2	58
39	Progesterone action and responses in the αERKO mouse. Steroids, 2000, 65, 551-557.	0.8	49
40	Uterine Gland Formation in Mice Is a Continuous Process, Requiring the Ovary after Puberty, But Not after Parturition1. Biology of Reproduction, 2011, 85, 954-964.	1.2	49
41	Juxtacrine Activity of Estrogen Receptor \hat{l}_{\pm} in Uterine Stromal Cells is Necessary for Estrogen-Induced Epithelial Cell Proliferation. Scientific Reports, 2017, 7, 8377.	1.6	48
42	Estrogenic Activity of Bisphenol A and 2,2-bis($\langle i \rangle p \langle i \rangle$ -Hydroxyphenyl)-1,1,1-trichloroethane (HPTE) Demonstrated in Mouse Uterine Gene Profiles. Environmental Health Perspectives, 2011, 119, 63-70.	2.8	46
43	Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse. Molecular Endocrinology, 2014, 28, 899-911.	3.7	42
44	Selective Disruption of $\text{ER}\hat{I}\pm$ DNA-Binding Activity Alters Uterine Responsiveness to Estradiol. Molecular Endocrinology, 2009, 23, 2111-2116.	3.7	39
45	Uterine Epithelial Cell Estrogen Receptor Alpha-Dependent and -Independent Genomic Profiles That Underlie Estrogen Responses in Mice1. Biology of Reproduction, 2014, 91, 110.	1.2	39
46	Distinct functions and regulation of epithelial progesterone receptor in the mouse cervix, vagina, and uterus. Oncotarget, 2016, 7, 17455-17467.	0.8	32
47	Lack of ductal development in the absence of functional estrogen receptor alpha delays mammary tumor formation induced by transgenic expression of ErbB2/neu. Cancer Research, 2002, 62, 2798-805.	0.4	32
48	Estren Behaves as a Weak Estrogen Rather than a Nongenomic Selective Activator in the Mouse Uterus. Endocrinology, 2006, 147, 2203-2214.	1.4	31
49	Profile of estrogenâ€responsive genes in an estrogenâ€specific mammary gland outgrowth model. Molecular Reproduction and Development, 2009, 76, 733-750.	1.0	30
50	The role of genetics in estrogen responses: a critical piece of an intricate puzzle. FASEB Journal, 2014, 28, 5042-5054.	0.2	30
51	Activation of a Uterine Insulin-Like Growth Factor I Signaling Pathway by Clinical and Environmental Estrogens: Requirement of Estrogen Receptor- $\hat{l}\pm.$, 0, .		28
52	Ex3αERKO male infertility phenotype recapitulates the αERKO male phenotype. Journal of Endocrinology, 2010, 207, 281-288.	1.2	27
53	A distal super enhancer mediates estrogen-dependent mouse uterine–specific gene transcription of lgf1 (insulin-like growth factor 1). Journal of Biological Chemistry, 2019, 294, 9746-9759.	1.6	27
54	SCA-1 Labels a Subset of Estrogen-Responsive Bipotential Repopulating Cells within the CD24 + CD49f hi Mammary Stem Cell-Enriched Compartment. Stem Cell Reports, 2017, 8, 417-431.	2.3	22

#	Article	lF	Citations
55	Genetic control of estrogenâ€regulated transcriptional and cellular responses in mouse uterus. FASEB Journal, 2013, 27, 1874-1886.	0.2	17
56	Role of $\mathrm{ER}\hat{\mathbf{l}}\pm$ in Mediating Female Uterine Transcriptional Responses to IGF1. Endocrinology, 2017, 158, 2427-2435.	1.4	17
57	DNA Sequence Constraints Define Functionally Active Steroid Nuclear Receptor Binding Sites in Chromatin. Endocrinology, 2017, 158, 3212-3234.	1.4	17
58	Estrogen receptor α (ERα)-binding super-enhancers drive key mediators that control uterine estrogen responses in mice. Journal of Biological Chemistry, 2020, 295, 8387-8400.	1.6	16
59	Steroid Receptors in the Ovary and Uterus. , 2006, , 593-678.		14
60	Cellâ€type specific analysis of physiological action of estrogen in mouse oviducts. FASEB Journal, 2021, 35, e21563.	0.2	14
61	A Hand to Support the Implantation Window. Science, 2011, 331, 863-864.	6.0	13
62	The Natural Estrogenic Compound Diarylheptanoid (D3):In VitroMechanisms of Action andin VivoUterine Responses via Estrogen Receptorî±. Environmental Health Perspectives, 2013, 121, 433-439.	2.8	13
63	Estrogen Down-regulation of the Scx Gene Is Mediated by the Opposing Strand-overlapping Gene Bop1. Journal of Biological Chemistry, 2010, 285, 4806-4814.	1.6	11
64	Genetic Control of Ductal Morphology, Estrogen-Induced Ductal Growth, and Gene Expression in Female Mouse Mammary Gland. Endocrinology, 2014, 155, 3025-3035.	1.4	11
65	Steroid Receptors in the Uterus and Ovary. , 2015, , 1099-1193.		11
66	Oviductal Retention of Embryos in Female Mice Lacking Estrogen Receptor \hat{l}_{\pm} in the Isthmus and the Uterus. Endocrinology, 2020, 161, .	1.4	11
67	Progesterone Signaling in Endometrial Epithelial Organoids. Cells, 2022, 11, 1760.	1.8	9
68	Negative elongation factor is essential for endometrial function. FASEB Journal, 2019, 33, 3010-3023.	0.2	8
69	Development of Phenotypic and Transcriptional Biomarkers to Evaluate Relative Activity of Potentially Estrogenic Chemicals in Ovariectomized Mice. Environmental Health Perspectives, 2015, 123, 344-352.	2.8	7
70	Physiological and Pathological Roles of Estrogen Receptor. Cancer Drug Discovery and Development, 2019, , 15-47.	0.2	6
71	Upregulation of estrogen receptor expression in the uterus of ovariectomized B6C3F1 mice and Ishikawa cells treated with bromoethane. Toxicology and Applied Pharmacology, 2005, 209, 226-235.	1.3	5
72	Peri- and Postpubertal Estrogen Exposures of Female Mice Optimize Uterine Responses Later in Life. Endocrinology, 2020, 161, .	1.4	5

Sylvia C Hewitt

#	Article	lF	CITATIONS
73	Decoding the Inversion Symmetry Underlying Transcription Factor DNA-Binding Specificity and Functionality in the Genome. IScience, 2019, 15, 552-591.	1.9	2
74	The Five W's of Progesterone Receptors A and B: Now We Know Where and When. Endocrinology, 2006, 147, 5501-5502.	1.4	1
75	ROLE OF TETHERED ER MECHANISMS IN UTERINE RESPONSES. Biology of Reproduction, 2007, 77, 145-145.	1.2	O
76	Estrogen-regulated genes in the endometrium. Reproductive Medicine and Assisted Reproductive Techniques Series, 2008, , 162-175.	0.1	0
77	Uterine Chromatin Immunoprecipitation-Sequencing Profile of Estrogen Receptor Alpha DNA Binding Mutant Reveals Novel Interactions Between Estrogen Receptor Alpha and Progesterone Receptor Signaling Biology of Reproduction, 2012, 87, 333-333.	1.2	0