Alison C Lloyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1298683/publications.pdf

Version: 2024-02-01

38 papers

5,928 citations

236925 25 h-index 35 g-index

45 all docs

45 docs citations

45 times ranked

7001 citing authors

#	Article	IF	CITATIONS
1	Activation of MAPK/ERK signalling in Merlin-null Schwann cells leads to increased and sustained immune cell infiltration in the peripheral nervous system. Neuro-Oncology, 2021, 23, iv8-iv8.	1.2	O
2	Activation of Raf signalling in NF2-null Schwann cells leads to sustained proliferation; an investigation of a new and inducible model for human schwannoma. Neuro-Oncology, 2021, 23, iv7-iv7.	1.2	0
3	Use of a new mouse schwannoma tumour model to monitor changes in peripheral nerve morphology in Merlin null Schwann cells. Neuro-Oncology, 2021, 23, iv7-iv8.	1.2	O
4	Roadmap for the Emerging Field of Cancer Neuroscience. Cell, 2020, 181, 219-222.	28.9	182
5	Schwann cell plasticityâ€roles in tissue homeostasis, regeneration, and disease. Glia, 2019, 67, 2203-2215.	4.9	75
6	The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population. Development (Cambridge), 2018, 145, .	2.5	62
7	HDAC3 Regulates the Transition to the Homeostatic Myelinating Schwann Cell State. Cell Reports, 2018, 25, 2755-2765.e5.	6.4	22
8	The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration. Neuron, 2017, 96, 98-114.e7.	8.1	245
9	Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development (Cambridge), 2017, 144, 3114-3125.	2.5	75
10	Editorial overview: Glial biology. Current Opinion in Neurobiology, 2017, 47, iv-vi.	4.2	1
11	The multicellular complexity of peripheral nerve regeneration. Current Opinion in Neurobiology, 2016, 39, 38-46.	4.2	168
12	Schwann Cells: Development and Role in Nerve Repair. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020487.	5 . 5	530
13	Chris Marshall 1949–2015. Nature Cell Biology, 2015, 17, 1229-1229.	10.3	1
14	Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell, 2015, 162, 1127-1139.	28.9	633
15	Alan Hall (1952–2015). Science, 2015, 350, 1039-1039.	12.6	O
16	Update from the 2013 international neurofibromatosis conference. American Journal of Medical Genetics, Part A, 2014, 164, 2969-2978.	1.2	17
17	Injury Signals Cooperate with Nf1 Loss to Relieve the Tumor-Suppressive Environment of Adult Peripheral Nerve. Cell Reports, 2013, 5, 126-136.	6.4	57
18	The Regulation of Cell Size. Cell, 2013, 154, 1194-1205.	28.9	321

#	Article	IF	CITATIONS
19	A Central Role for the ERK-Signaling Pathway in Controlling Schwann Cell Plasticity and Peripheral Nerve Regeneration InÂVivo. Neuron, 2012, 73, 729-742.	8.1	345
20	Loss of Rb Cooperates with Ras to Drive Oncogenic Growth in Mammalian Cells. Current Biology, 2012, 22, 1765-1773.	3.9	9
21	Aspects of cell growth control illustrated by the Schwann cell. Current Opinion in Cell Biology, 2012, 24, 852-857.	5.4	12
22	A Genetic Screen for Anchorage-Independent Proliferation in Mammalian Cells Identifies a Membrane-Bound Neuregulin. PLoS ONE, 2010, 5, e11774.	2.5	5
23	EphB Signaling Directs Peripheral Nerve Regeneration through Sox2-Dependent Schwann Cell Sorting. Cell, 2010, 143, 145-155.	28.9	429
24	Neurofibroma development in NF1 – insights into tumour initiation. Trends in Cell Biology, 2009, 19, 395-403.	7.9	35
25	Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis. Journal of Cell Science, 2009, 122, 4516-4525.	2.0	48
26	c-Jun is a negative regulator of myelination. Journal of Cell Biology, 2008, 181, 625-637.	5.2	345
27	Cell Size Regulation in Mammalian Cells. Cell Cycle, 2007, 6, 218-224.	2.6	53
28	Treating leprosy: an Erb-al remedy?. Trends in Pharmacological Sciences, 2007, 28, 103-105.	8.7	9
29	Distinct functions for ERKs?. , 2006, 5, 13.		67
30	Spontaneous Human Adult Stem Cell Transformation. Cancer Research, 2005, 65, 3035-3039.	0.9	997
31	The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO Journal, 2004, 23, 3061-3071.	7.8	284
32	Dissecting the Contribution of p16 INK4A and the Rb Family to the Ras Transformed Phenotype. Molecular and Cellular Biology, 2003, 23, 2530-2542.	2.3	19
33	Limits to lifespan. Nature Cell Biology, 2002, 4, E25-E27.	10.3	66
34	Lack of Replicative Senescence in Cultured Rat Oligodendrocyte Precursor Cells. Science, 2001, 291, 868-871.	12.6	224
35	Cell senescence and cancer. Nature Reviews Cancer, 2001, 1, 203-213.	28.4	251
36	Lack of Replicative Senescence in Normal Rodent Glia. Science, 2001, 291, 872-875.	12.6	177

ALISON C LLOYD

#	Article	IF	CITATIONS
37	p53: only ARF the story. Nature Cell Biology, 2000, 2, E48-E50.	10.3	28
38	Ras versus cyclin-dependent kinase inhibitors. Current Opinion in Genetics and Development, 1998, 8, 43-48.	3.3	60