Daljit Singh Arora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1298534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antiproliferative and Oxidative Damage Protection Activities of Endophytic Fungi Aspergillus fumigatus and Chaetomium globosum from Moringa oleifera Lam Applied Biochemistry and Biotechnology, 2021, 193, 3570-3585.	2.9	4
2	Antioxidant compounds from microbial sources: A review. Food Research International, 2020, 129, 108849.	6.2	95
3	Bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of Symplocos racemosa Roxb. Bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by GC-MS. BMC Pharmacology & Toxicology, 2020, 21, 78.	2.4	3
4	Bioactive potential of endophytic fungus Chaetomium globosum and GC–MS analysis of its responsible components. Scientific Reports, 2020, 10, 18792.	3.3	26
5	Antibiofilm, antiproliferative, antioxidant and antimutagenic activities of an endophytic fungus Aspergillus fumigatus from Moringa oleifera. Molecular Biology Reports, 2020, 47, 2901-2911.	2.3	28
6	Prospecting the antimicrobial and antibiofilm potential of Chaetomium globosum an endophytic fungus from Moringa oleifera. AMB Express, 2020, 10, 206.	3.0	21
7	Antimicrobial Potential of Fungal Endophytes from Moringa oleifera. Applied Biochemistry and Biotechnology, 2019, 187, 628-648.	2.9	24
8	Antioxidant Potential and Extracellular Auxin Production by White Rot Fungi. Applied Biochemistry and Biotechnology, 2019, 187, 531-539.	2.9	10
9	Scientific validation of the antimicrobial and antiproliferative potential of Clerodendrum serratum (L.) Moon, its phytoconstituents and their biosafety by acute oral toxicity study. Drug and Chemical Toxicology, 2019, 44, 1-11.	2.3	4
10	Major Phytoconstituents of Prunus cerasoides Responsible for Antimicrobial and Antibiofilm Potential Against Some Reference Strains of Pathogenic Bacteria and Clinical Isolates of MRSA. Applied Biochemistry and Biotechnology, 2019, 188, 1185-1204.	2.9	15
11	Scientific validation of the antimicrobial and antiproliferative potential of Berberis aristata DC root bark, its phytoconstituents and their biosafety. AMB Express, 2019, 9, 143.	3.0	13
12	Preliminary investigation of the effect of doping of copper oxide in CaO-SiO 2 -P 2 O 5 -MgO bioactive composition for bone repair applications. Materials Science and Engineering C, 2018, 83, 177-186.	7.3	19
13	In Vitro Evaluation and Statistical Optimization of Antimicrobial Activity of Prunus cerasoides Stem Bark. Applied Biochemistry and Biotechnology, 2018, 184, 821-837.	2.9	16
14	Assessment of the efficiency of U-tube continuous bioreactor and immobilized enzyme beads for dye decolourization. 3 Biotech, 2018, 8, 241.	2.2	2
15	Coordination chemistry of Cu(II), Co(II), Zn(II) and Ag(I) complexes of isomeric pyridine 2- and 4-carboxamides and their biological activity evaluation. Polyhedron, 2017, 127, 153-166.	2.2	7

16

DALJIT SINGH ARORA

#	Article	IF	CITATIONS
19	Scaffolds of hydroxyl apatite nanoparticles disseminated in 1, 6-diisocyanatohexane-extended poly(1,) Tj ETQq1 1 Engineering C, 2017, 71, 780-790.	0.784314 7.3	1 rgBT /Over 15
20	Magnesium and silver doped CaO–Na 2 O–SiO 2 –P 2 O 5 bioceramic nanoparticles as implant materials. Ceramics International, 2016, 42, 12651-12662.	4.8	27
21	Antimicrobial Potential of Callistemon lanceolatus Seed Extract and its Statistical Optimization. Applied Biochemistry and Biotechnology, 2016, 180, 289-305.	2.9	7
22	Comparative Study of Silver Nanoparticles Coated and Uncoated NiO–Fe ₂ O ₃ –CaO–SiO ₂ –P ₂ O ₅ Ferromagnetic Bioactive Ceramics. Journal of the American Ceramic Society, 2016, 99, 3632-3638.	3.8	6
23	B 2 O 3 –MgO–SiO 2 –Na 2 O–CaO–P 2 O 5 –ZnO bioactive system for bone regeneration applicati Ceramics International, 2016, 42, 3638-3651.	ons 4.8	29
24	InÂvitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT - Food Science and Technology, 2016, 65, 1025-1030.	5.2	131
25	Production of Antioxidant Bioactive Phenolic Compounds by Solid-state Fermentation on Agro-residues Using Various Fungi Isolated from Soil. Asian Journal of Biotechnology, 2016, 8, 8-15.	0.3	9
26	Antioxidant Potential of Penicillium expansum and Purification of its Functional Compound. Asian Journal of Biotechnology, 2016, 9, 24-34.	0.3	5
27	Isolation, purification and characterization of novel antimicrobial compound 7-methoxy-2,2-dimethyl-4-octa-4′,6′-dienyl-2H-napthalene-1-one from Penicillium sp. and its cytotoxicity studies. AMB Express, 2015, 5, 120.	3.0	10
28	Antibiofilm potential of flavonoids extracted from <i>Moringa oleifera</i> seed coat against <i>Staphylococcus aureus</i> , <i>Pseudomonas aeruginosa</i> and <i>Candida albicans</i> . Journal of Applied Microbiology, 2015, 118, 313-325.	3.1	89
29	Fungal degradation of lignocellulosic residues: An aspect of improved nutritive quality. Critical Reviews in Microbiology, 2015, 41, 52-60.	6.1	71
30	Bioprocessing of wheat and paddy straw for their nutritional up-gradation. Bioprocess and Biosystems Engineering, 2014, 37, 1437-1445.	3.4	14
31	In vitro antimicrobial evaluation and phytoconstituents of Moringa oleifera pod husks. Industrial Crops and Products, 2014, 52, 125-135.	5.2	35
32	Isolation, Purification, and Characterization of Antimicrobial Compound 6-[1,2-dimethyl-6-(2-methyl-allyloxy)-hexyl]-3-(2-methoxy-phenyl)-chromen-4-one from Penicillium sp. HT-28. Applied Biochemistry and Biotechnology, 2014, 173, 1963-1976.	2.9	13
33	Investigation of 70SiO ₂ â^'15CaOâ^'10P ₂ O5â^'5Na ₂ O Glass Composition for Bone Regeneration Applications. Smart Science, 2014, 2, 191-195.	3.2	7
34	Antimicrobial Potential of Moringa oleifera Seed Coat and Its Bioactive Phytoconstituents. Microbiology and Biotechnology Letters, 2014, 42, 152-161.	0.4	9
35	Optimization and Assay of Antioxidant Potential of Two Penicillium spp. by Different Procedures. Current Biotechnology, 2012, 1, 2-10.	0.4	5
36	Solid state degradation of paddy straw by Phlebia floridensis in the presence of different supplements for improving its nutritive status. International Biodeterioration and Biodegradation, 2011, 65, 990-996.	3.9	14

Daljit Singh Arora

#	Article	IF	CITATIONS
37	Effect of different supplements on bioprocessing of wheat straw by Phlebia brevispora: Changes in its chemical composition, in vitro digestibility and nutritional properties. Bioresource Technology, 2011, 102, 8085-8091.	9.6	34
38	Biodegradation of paddy straw obtained from different geographic locations by means of Phlebia spp. for animal feed. Biodegradation, 2011, 22, 143-152.	3.0	22
39	In Vitro Antioxidant Potential of Some Soil Fungi: Screening of Functional Compounds and their Purification from Penicillium citrinum. Applied Biochemistry and Biotechnology, 2011, 165, 639-651.	2.9	21
40	Biodelignification of wheat straw and its effect on in vitro digestibility and antioxidant properties. International Biodeterioration and Biodegradation, 2011, 65, 352-358.	3.9	41
41	Antioxidant Activity of <i>Aspergillus fumigatus</i> . ISRN Pharmacology, 2011, 2011, 1-11.	1.6	28
42	Optimization of antioxidant potential ofAspergillus terreusthrough different statistical approaches. Biotechnology and Applied Biochemistry, 2010, 57, 77-86.	3.1	6
43	Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresource Technology, 2010, 101, 9248-9253.	9.6	81
44	Ligninolytic Fungal Laccases and Their Biotechnological Applications. Applied Biochemistry and Biotechnology, 2010, 160, 1760-1788.	2.9	309
45	Antioxidant properties and nutritional value of wheat straw bioprocessed by Phanerochaete chrysosporium and Daedalea flavida. Journal of General and Applied Microbiology, 2010, 56, 519-523.	0.7	10
46	Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Brazilian Journal of Microbiology, 2010, 41, 765-777.	2.0	40
47	Antibacterial Activity of Tea and Coffee: Their Extracts and Preparations. International Journal of Food Properties, 2009, 12, 286-294.	3.0	39
48	Comparative production of ligninolytic enzymes by Phanerochaete chrysosporium and Polyporus sanguineus. Canadian Journal of Microbiology, 2009, 55, 1397-1402.	1.7	7
49	Antioxidant activity of fungi isolated from soil of different areas of Punjab,India. Journal of Applied and Natural Science, 2009, 1, 123-128.	0.4	11
50	In vitro antibacterial activity of three plants belonging to the family Umbelliferae. International Journal of Antimicrobial Agents, 2008, 31, 393-395.	2.5	23
51	Antibacterial activity of some Indian medicinal plants. Journal of Natural Medicines, 2007, 61, 313-317.	2.3	95
52	Production of Ligninolytic Enzymes by Phlebia Floridensis. World Journal of Microbiology and Biotechnology, 2005, 21, 1021-1028.	3.6	39
53	Decolourisation of diverse industrial dyes by somePhlebia spp. and their comparison withPhanerochaete chrysosporium. Journal of Basic Microbiology, 2004, 44, 331-338.	3.3	12
54	Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. International Biodeterioration and Biodegradation, 2002, 50, 115-120.	3.9	205

#	Article	IF	CITATIONS
55	Effects of various media and supplements on laccase production by some white rot fungi. Bioresource Technology, 2001, 77, 89-91.	9.6	100
56	Laccase production by some white rot fungi under different nutritional conditions. Bioresource Technology, 2000, 73, 283-285.	9.6	83