Daljit Singh Arora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1298534/publications.pdf

Version: 2024-02-01

331670 243625 2,012 56 21 44 citations h-index g-index papers 57 57 57 2474 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ligninolytic Fungal Laccases and Their Biotechnological Applications. Applied Biochemistry and Biotechnology, 2010, 160, 1760-1788.	2.9	309
2	Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. International Biodeterioration and Biodegradation, 2002, 50, 115-120.	3.9	205
3	InÂvitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT - Food Science and Technology, 2016, 65, 1025-1030.	5.2	131
4	Effects of various media and supplements on laccase production by some white rot fungi. Bioresource Technology, 2001, 77, 89-91.	9.6	100
5	Antibacterial activity of some Indian medicinal plants. Journal of Natural Medicines, 2007, 61, 313-317.	2.3	95
6	Antioxidant compounds from microbial sources: A review. Food Research International, 2020, 129, 108849.	6.2	95
7	Antibiofilm potential of flavonoids extracted from <i>Moringa oleifera</i> seed coat against <i>Staphylococcus aureus</i> , <i>Pseudomonas aeruginosa</i> and <i>Candida albicans</i> Journal of Applied Microbiology, 2015, 118, 313-325.	3.1	89
8	Laccase production by some white rot fungi under different nutritional conditions. Bioresource Technology, 2000, 73, 283-285.	9.6	83
9	Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresource Technology, 2010, 101, 9248-9253.	9.6	81
10	Fungal degradation of lignocellulosic residues: An aspect of improved nutritive quality. Critical Reviews in Microbiology, 2015, 41, 52-60.	6.1	71
11	Biodelignification of wheat straw and its effect on in vitro digestibility and antioxidant properties. International Biodeterioration and Biodegradation, 2011, 65, 352-358.	3.9	41
12	Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Brazilian Journal of Microbiology, 2010, 41, 765-777.	2.0	40
13	Production of Ligninolytic Enzymes by Phlebia Floridensis. World Journal of Microbiology and Biotechnology, 2005, 21, 1021-1028.	3.6	39
14	Antibacterial Activity of Tea and Coffee: Their Extracts and Preparations. International Journal of Food Properties, 2009, 12, 286-294.	3.0	39
15	In vitro antimicrobial evaluation and phytoconstituents of Moringa oleifera pod husks. Industrial Crops and Products, 2014, 52, 125-135.	5.2	35
16	Effect of different supplements on bioprocessing of wheat straw by Phlebia brevispora: Changes in its chemical composition, in vitro digestibility and nutritional properties. Bioresource Technology, 2011, 102, 8085-8091.	9.6	34
17	B 2 O 3 –MgO–SiO 2 –Na 2 O–CaO–P 2 O 5 –ZnO bioactive system for bone regeneration application Ceramics International, 2016, 42, 3638-3651.	ons 4.8	29
18	Antioxidant Activity of <i>Aspergillus fumigatus</i> . ISRN Pharmacology, 2011, 2011, 1-11.	1.6	28

#	Article	IF	CITATIONS
19	Antibiofilm, antiproliferative, antioxidant and antimutagenic activities of an endophytic fungus Aspergillus fumigatus from Moringa oleifera. Molecular Biology Reports, 2020, 47, 2901-2911.	2.3	28
20	Magnesium and silver doped CaO–Na 2 O–SiO 2 –P 2 O 5 bioceramic nanoparticles as implant materials. Ceramics International, 2016, 42, 12651-12662.	4.8	27
21	Bioactive potential of endophytic fungus Chaetomium globosum and GC–MS analysis of its responsible components. Scientific Reports, 2020, 10, 18792.	3.3	26
22	Antimicrobial Potential of Fungal Endophytes from Moringa oleifera. Applied Biochemistry and Biotechnology, 2019, 187, 628-648.	2.9	24
23	In vitro antibacterial activity of three plants belonging to the family Umbelliferae. International Journal of Antimicrobial Agents, 2008, 31, 393-395.	2.5	23
24	Biodegradation of paddy straw obtained from different geographic locations by means of Phlebia spp. for animal feed. Biodegradation, 2011, 22, 143-152.	3.0	22
25	In Vitro Antioxidant Potential of Some Soil Fungi: Screening of Functional Compounds and their Purification from Penicillium citrinum. Applied Biochemistry and Biotechnology, 2011, 165, 639-651.	2.9	21
26	Prospecting the antimicrobial and antibiofilm potential of Chaetomium globosum an endophytic fungus from Moringa oleifera. AMB Express, 2020, 10, 206.	3.0	21
27	In vitro antimicrobial potential of extracts and phytoconstituents from Gymnema sylvestre R.Br. leaves and their biosafety evaluation. AMB Express, 2017, 7, 115.	3.0	20
28	Preliminary investigation of the effect of doping of copper oxide in CaO-SiO 2 -P 2 O 5 -MgO bioactive composition for bone repair applications. Materials Science and Engineering C, 2018, 83, 177-186.	7.3	19
29	In Vitro Evaluation and Statistical Optimization of Antimicrobial Activity of Prunus cerasoides Stem Bark. Applied Biochemistry and Biotechnology, 2018, 184, 821-837.	2.9	16
30	Scaffolds of hydroxyl apatite nanoparticles disseminated in 1, 6-diisocyanatohexane-extended poly(1,) Tj ETQq0 C Engineering C, 2017, 71, 780-790.	0 0 rgBT /0 7.3	Overlock 10 T
31	Major Phytoconstituents of Prunus cerasoides Responsible for Antimicrobial and Antibiofilm Potential Against Some Reference Strains of Pathogenic Bacteria and Clinical Isolates of MRSA. Applied Biochemistry and Biotechnology, 2019, 188, 1185-1204.	2.9	15
32	Solid state degradation of paddy straw by Phlebia floridensis in the presence of different supplements for improving its nutritive status. International Biodeterioration and Biodegradation, 2011, 65, 990-996.	3.9	14
33	Bioprocessing of wheat and paddy straw for their nutritional up-gradation. Bioprocess and Biosystems Engineering, 2014, 37, 1437-1445.	3.4	14
34	Isolation, Purification, and Characterization of Antimicrobial Compound 6-[1,2-dimethyl-6-(2-methyl-allyloxy)-hexyl]-3-(2-methoxy-phenyl)-chromen-4-one from Penicillium sp. HT-28. Applied Biochemistry and Biotechnology, 2014, 173, 1963-1976.	2.9	13
35	Scientific validation of the antimicrobial and antiproliferative potential of Berberis aristata DC root bark, its phytoconstituents and their biosafety. AMB Express, 2019, 9, 143.	3.0	13
36	Decolourisation of diverse industrial dyes by somePhlebia spp. and their comparison withPhanerochaete chrysosporium. Journal of Basic Microbiology, 2004, 44, 331-338.	3.3	12

#	Article	IF	CITATIONS
37	Antioxidant activity of fungi isolated from soil of different areas of Punjab,India. Journal of Applied and Natural Science, 2009, 1, 123-128.	0.4	11
38	Antioxidant properties and nutritional value of wheat straw bioprocessed by Phanerochaete chrysosporium and Daedalea flavida. Journal of General and Applied Microbiology, 2010, 56, 519-523.	0.7	10
39	Isolation, purification and characterization of novel antimicrobial compound 7-methoxy-2,2-dimethyl-4-octa-4′,6′-dienyl-2H-napthalene-1-one from Penicillium sp. and its cytotoxicity studies. AMB Express, 2015, 5, 120.	3.0	10
40	Antioxidant Potential and Extracellular Auxin Production by White Rot Fungi. Applied Biochemistry and Biotechnology, 2019, 187, 531-539.	2.9	10
41	Production of Antioxidant Bioactive Phenolic Compounds by Solid-state Fermentation on Agro-residues Using Various Fungi Isolated from Soil. Asian Journal of Biotechnology, 2016, 8, 8-15.	0.3	9
42	Antimicrobial Potential of Moringa oleifera Seed Coat and Its Bioactive Phytoconstituents. Microbiology and Biotechnology Letters, 2014, 42, 152-161.	0.4	9
43	Comparative production of ligninolytic enzymes by Phanerochaete chrysosporium and Polyporus sanguineus. Canadian Journal of Microbiology, 2009, 55, 1397-1402.	1.7	7
44	Investigation of 70SiO ₂ â^'15CaOâ^'10P ₂ O5â^'5Na ₂ O Glass Composition for Bone Regeneration Applications. Smart Science, 2014, 2, 191-195.	3.2	7
45	Antimicrobial Potential of Callistemon lanceolatus Seed Extract and its Statistical Optimization. Applied Biochemistry and Biotechnology, 2016, 180, 289-305.	2.9	7
46	Coordination chemistry of $Cu(II)$, $Co(II)$, $Zn(II)$ and $Ag(I)$ complexes of isomeric pyridine 2- and 4-carboxamides and their biological activity evaluation. Polyhedron, 2017, 127, 153-166.	2.2	7
47	Optimization of antioxidant potential ofAspergillus terreusthrough different statistical approaches. Biotechnology and Applied Biochemistry, 2010, 57, 77-86.	3.1	6
48	Comparative Study of Silver Nanoparticles Coated and Uncoated NiOâ€"Fe ₂ O ₃ â€"CaOâ€"SiO ₂ â€"P ₂ O ₅ Ferromagnetic Bioactive Ceramics. Journal of the American Ceramic Society, 2016, 99, 3632-3638.	3.8	6
49	Optimization and Assay of Antioxidant Potential of Two Penicillium spp. by Different Procedures. Current Biotechnology, 2012, 1, 2-10.	0.4	5
50	Antioxidant Potential of Penicillium expansum and Purification of its Functional Compound. Asian Journal of Biotechnology, 2016, 9, 24-34.	0.3	5
51	Scientific validation of the antimicrobial and antiproliferative potential of Clerodendrum serratum (L.) Moon, its phytoconstituents and their biosafety by acute oral toxicity study. Drug and Chemical Toxicology, 2019, 44, 1-11.	2.3	4
52	Antiproliferative and Oxidative Damage Protection Activities of Endophytic Fungi Aspergillus fumigatus and Chaetomium globosum from Moringa oleifera Lam Applied Biochemistry and Biotechnology, 2021, 193, 3570-3585.	2.9	4
53	Bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of Symplocos racemosa Roxb. Bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by GC-MS. BMC Pharmacology & Samp; Toxicology, 2020, 21, 78.	2.4	3
54	Investigation of bioactive CaO-P2O5-MgO-SiO2 ceramic composition for orthopedic applications. AIP Conference Proceedings, 2017, , .	0.4	2

#	Article	IF	CITATIONS
55	Assessment of the efficiency of U-tube continuous bioreactor and immobilized enzyme beads for dye decolourization. 3 Biotech, 2018, 8, 241.	2.2	2