
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1297809/publications.pdf Version: 2024-02-01

ATSUSHI KUDONMA

#	Article	IF	CITATIONS
1	Enhancers, development, and evolution. Development Growth and Differentiation, 2020, 62, 265-268.	1.5	1
2	PRDM14 and BLIMP1 control the development of chicken primordial germ cells. Developmental Biology, 2019, 455, 32-41.	2.0	12
3	<i>Hoxa13</i> regulates expression of common <i>Hox</i> target genes involved in cartilage development to coordinate the expansion of the autopodal anlage. Development Growth and Differentiation, 2019, 61, 228-251.	1.5	13
4	SOX2-dependent determination of tissue identity in the foregut. Mechanisms of Development, 2017, 145, S78.	1.7	0
5	Anatomical integration of the sacral–hindlimb unit coordinated by CDF11 underlies variation in hindlimb positioning in tetrapods. Nature Ecology and Evolution, 2017, 1, 1392-1399.	7.8	40
6	Inactivation of Sonic Hedgehog Signaling and Polydactyly in Limbs of Hereditary Multiple Malformation, a Novel Type of Talpid Mutant. Frontiers in Cell and Developmental Biology, 2016, 4, 149.	3.7	6
7	A role for HOX13 proteins in the regulatory switch between TADs at the <i>HoxD</i> locus. Genes and Development, 2016, 30, 1172-1186.	5.9	81
8	Efficient harvesting methods for earlyâ€stage snake and turtle embryos. Development Growth and Differentiation, 2016, 58, 241-249.	1.5	5
9	Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development. Development (Cambridge), 2015, 142, 1672-83.	2.5	20
10	Leucophores are similar to xanthophores in their specification and differentiation processes in medaka. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7343-7348.	7.1	83
11	Efficient embryonic culture method for the <scp>J</scp> apanese striped snake, <i><scp>E</scp>laphe quadrivirgata</i> , and its early developmental stages. Development Growth and Differentiation, 2014, 56, 573-582.	1.5	21
12	Etv1 and Ewsr1 cooperatively regulate limb mesenchymal Fgf10 expression in response to apical ectodermal ridge-derived fibroblast growth factor signal. Developmental Biology, 2014, 394, 181-190.	2.0	14
13	Wnt and BMP signaling cooperate with Hox in the control of Six2 expression in limb tendon precursor. Developmental Biology, 2013, 377, 363-374.	2.0	39
14	<i>Fibroblast growth factor 10</i> gene regulation in the second heart field by Tbx1, Nkx2-5, and Islet1 reveals a genetic switch for down-regulation in the myocardium. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18273-18280.	7.1	109
15	DEAD-Box Protein Ddx46 Is Required for the Development of the Digestive Organs and Brain in Zebrafish. PLoS ONE, 2012, 7, e33675.	2.5	25
16	Zebrafish Dmrta2 regulates neurogenesis in the telencephalon. Genes To Cells, 2011, 16, 1097-1109.	1.2	48
17	FGF9 monomer–dimer equilibrium regulates extracellular matrix affinity and tissue diffusion. Nature Genetics, 2009, 41, 289-298.	21.4	104
18	Foregut endoderm is specified early in avian development through signal(s) emanating from Hensen's node or its derivatives. Mechanisms of Development, 2008, 125, 377-395.	1.7	7

#	Article	IF	CITATIONS
19	Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development (Cambridge), 2008, 135, 2521-2529.	2.5	165
20	Specification of cell fate along the proximal-distal axis in the developing chick limb bud. Development (Cambridge), 2007, 134, 1397-1406.	2.5	59
21	Fgf signaling negatively regulates Nodal-dependent endoderm induction in zebrafish. Developmental Biology, 2006, 300, 612-622.	2.0	41
22	Crucial Transcription Factors in Endoderm and Embryonic Gut Development Are Expressed in Gut-Like Structures from Mouse ES Cells. Stem Cells, 2006, 24, 624-630.	3.2	29
23	The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development (Cambridge), 2006, 133, 4063-4072.	2.5	113
24	Notch signaling can regulate endoderm formation in zebrafish. Developmental Dynamics, 2004, 229, 756-762.	1.8	51
25	Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development. Development Growth and Differentiation, 2003, 45, 485-498.	1.5	40
26	Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus. Mechanisms of Development, 2003, 120, 1097-1111.	1.7	111
27	Hox Proteins Functionally Cooperate with the GC Box-binding Protein System through Distinct Domains. Journal of Biological Chemistry, 2003, 278, 30148-30156.	3.4	39
28	<i>Tbx4-Fgf10</i> system controls lung bud formation during chicken embryonic development. Development (Cambridge), 2003, 130, 1225-1234.	2.5	132
29	Inhibition of BMP Activity by the FGF Signal Promotes Posterior Neural Development in Zebrafish. Developmental Biology, 2002, 244, 9-20.	2.0	60
30	Transition of Hox expression during limb cartilage development. Mechanisms of Development, 2002, 118, 241-245.	1.7	18
31	Regulated lens regeneration from isolated pigmented epithelial cells of newt iris in culture in response to FGF2/4. Differentiation, 2002, 70, 101-108.	1.9	35
32	Pre-gut endoderm of chick embryos is regionalized by 1.5 days of development. Developmental Dynamics, 2002, 223, 33-47.	1.8	18
33	The Mouse Hoxd13spdh Mutation, a Polyalanine Expansion Similar to Human Type II Synpolydactyly (SPD), Disrupts the Function but Not the Expression of Other Hoxd Genes. Developmental Biology, 2001, 237, 345-353.	2.0	75
34	HoxA and HoxB cluster genes subdivide the digestive tract into morphological domains during chick development. Mechanisms of Development, 2001, 101, 233-236.	1.7	28
35	Expression of zebrafish btg-b, an anti-proliferative cofactor, during early embryogenesis. Mechanisms of Development, 2001, 104, 113-115.	1.7	13
36	A novel sox gene, 226D7, acts downstream of Nodal signaling to specify endoderm precursors in zebrafish. Mechanisms of Development, 2001, 107, 25-38.	1.7	68

#	Article	IF	CITATIONS
37	Highly efficient transfection system for functional gene analysis in adult amphibian lens regeneration. Development Growth and Differentiation, 2001, 43, 361-370.	1.5	27
38	Fgf signalling through MAPK cascade is required for development of the subpallial telencephalon in zebrafish embryos. Development (Cambridge), 2001, 128, 4153-4164.	2.5	134
39	MurineMyak, a member of a family of yeastYAK1-related genes, is highly expressed in hormonally modulated epithelia in the reproductive system and in the embryonic central nervous system. , 2000, 55, 372-378.		5
40	Analysis of cartilage maturation using micromass cultures of primary chondrocytes. Development Growth and Differentiation, 2000, 42, 229-236.	1.5	37
41	Coordinated Expression of Hoxb Genes and Signaling Molecules during Development of the Chick Respiratory Tract. Developmental Biology, 2000, 227, 12-27.	2.0	53
42	Mosaic analysis with oep mutant reveals a repressive interaction between floor-plate and non-floor-plate mutant cells in the zebrafish neural tube. Development Growth and Differentiation, 1999, 41, 135-142.	1.5	7
43	Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted into limb blastema in the adult newt. Development Growth and Differentiation, 1999, 41, 429-440.	1.5	48
44	Developmental patterning in chondrocytic cultures by morphogenic gradients: BMP induces expression ofIndian hedgehogandNoggin. Genes To Cells, 1999, 4, 175-184.	1.2	47
45	Removal of vegetal yolk causes dorsal deficencies and impairs dorsal-inducing ability of the yolk cell in zebrafish. Mechanisms of Development, 1999, 81, 51-63.	1.7	95
46	MurineHoxc-9 gene contains a structurally and functionally conserved enhancer. , 1998, 212, 540-547.		11
47	Hox gene expression, AV-1 antigen expression, and cartilage pattern formation in chick recombinant limb buds. , 1998, 281, 26-35.		3
48	Expression ofMsx genes in regenerating and developing limbs of axolotl. , 1998, 282, 703-714.		82
49	Zebrafish wnt11: pattern and regulation of the expression by the yolk cell and No tail activity. Mechanisms of Development, 1998, 71, 165-176.	1.7	82
50	Retinoic Acid Changes the Proximodistal Developmental Competence and Affinity of Distal Cells in the Developing Chick Limb Bud. Developmental Biology, 1997, 188, 224-234.	2.0	38
51	High-level expression of exogenous genes by replication-competent retrovirus vectors with an internal ribosomal entry site. Gene, 1997, 202, 23-29.	2.2	26
52	Feather buds exert a polarizing activity when transplanted to chick limb buds. Development Growth and Differentiation, 1996, 38, 635-645.	1.5	0
53	Specification of posterior midbrain region in zebrafish neuroepithelium. Genes To Cells, 1996, 1, 369-377.	1.2	14
54	BMP-4 mediates interacting signals between the neural tube and skin along the dorsal midline. Genes To Cells, 1996, 1, 775-783.	1.2	35

#	Article	IF	CITATIONS
55	Mesoderm induction in zebrafish. Nature, 1996, 383, 131-132.	27.8	113
56	Coordinated Expression of Abd-B Subfamily Genes of the HoxA Cluster in the Developing Digestive Tract of Chick Embryo. Developmental Biology, 1995, 169, 76-89.	2.0	138
57	Comparative analysis of chicken Hoxb-4 regulation in transgenic mice. Mechanisms of Development, 1995, 53, 47-59.	1.7	54
58	Genetic Mechanisms Responsible for Pattern Formation in the Vertebrate Hindbrain: Regulation of Hoxb-1. , 1995, , 17-28.		0
59	A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature, 1994, 370, 567-571.	27.8	443
60	Cooperative Activation of HoxD Homeobox Genes by Factors from the Polarizing Region and the Apical Ridge in Chick Limb Morphogenesis. (chick limb bud/HoxD homeobox genes/ZPA factor/AER factor/in) Tj ETQqO (O O1rgBT /0	Dvenzkock 10 Tr
61	Cell type dependent transcription regulation by chick homeodomain proteins. Mechanisms of Development, 1992, 37, 25-36.	1.7	11
62	Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions. Nature, 1992, 356, 157-159.	27.8	156
63	Involvement of the Chox-4 chicken homeobox genes in determination of anteroposterior axial polarity during limb development. Cell, 1991, 64, 1197-1205.	28.9	225
64	Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature, 1991, 353, 443-445.	27.8	311
65	Specific DNA binding of the two chickenDeformedfamily homeodomain proteins,Chox-1.4 andChox-a. Nucleic Acids Research, 1990, 18, 1739-1747.	14.5	34
66	The nucleotide sequence of the cDNA encoding a chickenDeformedfamily homeobox gene,Chox-Z. Nucleic Acids Research, 1990, 18, 184-184.	14.5	18
67	Cloning of the homeotic <i>Sex combs reduced</i> gene in <i>Drosophila</i> and <i>in situ</i> localization of its transcripts. EMBO Journal, 1985, 4, 3757-3764.	7.8	85
68	Control elements of the Drosophila segmentation gene fushi tarazu. Cell, 1985, 43, 603-613.	28.9	447
69	Cloning and transcriptional analysis of the segmentation gene fushi tarazu of Drosophila. Cell, 1984, 37, 825-831.	28.9	146
70	Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryonic development. Cell, 1984, 37, 833-841.	28.9	387
71	Multi-gene structure of the storage protein genes of Sarcophaga peregrina. Journal of Molecular Biology, 1984, 174, 19-29.	4.2	14
72	A homologous protein-coding sequence in drosophila homeotic genes and its conservation in other metazoans. Cell, 1984, 37, 403-408.	28.9	932

#	Article	IF	CITATIONS
73	Differential expression of two abundant messenger RNAs during development of Sarcophaga peregrina. Developmental Biology, 1983, 99, 145-151.	2.0	23
74	Selective Expression of Cloned Middleâ€Repetitive Sequences in Nuclear RNA of Mouse Organs. FEBS Journal, 1983, 130, 161-165.	0.2	3
75	Preferential expression of unique sequences adjacent to middle repetitive sequences in mouse cytoplasmic RNA. Nucleic Acids Research, 1979, 7, 751-764.	14.5	13
76	Protein which interacts with a stimulatory factor of RNA polymerase II of Ehrlich ascites tumor cells. Biochemistry, 1977, 16, 5687-5691.	2.5	4
77	Separation of a stimulatory factor of RNA polymerase II from protein kinase activity of ehrlich ascites tumor cells. FEBS Letters, 1977, 75, 183-186.	2.8	4