
Thomas Ritter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1297539/publications.pdf Version: 2024-02-01

THOMAS PITTED

#	Article	IF	CITATIONS
1	Call for papers: Exploiting extracellular vesicles as therapeutic agents. Molecular Therapy, 2022, 30, 979.	3.7	1
2	Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis. Oncolmmunology, 2021, 10, 1859263.	2.1	13
3	Subconjunctival administration of low-dose murine allogeneic mesenchymal stromal cells promotes corneal allograft survival in mice. Stem Cell Research and Therapy, 2021, 12, 227.	2.4	7
4	Synthesized nanoparticles, biomimetic nanoparticles and extracellular vesicles for treatment of autoimmune disease: Comparison and prospect. Pharmacological Research, 2021, 172, 105833.	3.1	5
5	Artificial Cornea: Past, Current, and Future Directions. Frontiers in Medicine, 2021, 8, 770780.	1.2	29
6	TGF-β 1-Licensed Murine MSCs Show Superior Therapeutic Efficacy in Modulating Corneal Allograft Immune Rejection InÂVivo. Molecular Therapy, 2020, 28, 2023-2043.	3.7	38
7	Investigating the Potential and Pitfalls of EV-Encapsulated MicroRNAs as Circulating Biomarkers of Breast Cancer. Cells, 2020, 9, 141.	1.8	24
8	Nanosensitive optical coherence tomography to assess wound healing within the cornea. Biomedical Optics Express, 2020, 11, 3407.	1.5	17
9	TNFâ€Î±/ILâ€1β—licensed mesenchymal stromal cells promote corneal allograft survival <i>via</i> myeloid cellâ€mediated induction of Foxp3 ⁺ regulatory T cells in the lung. FASEB Journal, 2019, 33, 9404-9421.	0.2	37
10	High-risk Corneal Transplantation: Recent Developments and Future Possibilities. Transplantation, 2019, 103, 2468-2478.	0.5	75
11	Antiâ€donor antibody induction following intramuscular injections of allogeneic mesenchymal stromal cells. Immunology and Cell Biology, 2018, 96, 536-548.	1.0	5
12	Extracellular vesicles as modulators of wound healing. Advanced Drug Delivery Reviews, 2018, 129, 394-406.	6.6	116
13	Interspecies Incompatibilities Limit the Immunomodulatory Effect of Human Mesenchymal Stromal Cells in the Rat. Stem Cells, 2018, 36, 1210-1215.	1.4	21
14	Third-Party Allogeneic Mesenchymal Stromal Cells Prevent Rejection in a Pre-sensitized High-Risk Model of Corneal Transplantation. Frontiers in Immunology, 2018, 9, 2666.	2.2	39
15	Stromal Cell PD-L1 Inhibits CD8+ T-cell Antitumor Immune Responses and Promotes Colon Cancer. Cancer Immunology Research, 2018, 6, 1426-1441.	1.6	66
16	Distinctive Surface Glycosylation Patterns Associated With Mouse and Human CD4+ Regulatory T Cells and Their Suppressive Function. Frontiers in Immunology, 2017, 8, 987.	2.2	34
17	Regulating Immunogenicity and Tolerogenicity of Bone Marrow-Derived Dendritic Cells through Modulation of Cell Surface Glycosylation by Dexamethasone Treatment. Frontiers in Immunology, 2017, 8, 1427.	2.2	10
18	Anti-Donor Immune Responses Elicited by Allogeneic Mesenchymal Stem Cells and Their Extracellular Vesicles: Are We Still Learning?. Frontiers in Immunology, 2017, 8, 1626.	2.2	116

THOMAS RITTER

#	Article	IF	CITATIONS
19	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	2.2	43
20	vIL-10-overexpressing human MSCs modulate naÃ⁻ve and activated T lymphocytes following induction of collagenase-induced osteoarthritis. Stem Cell Research and Therapy, 2016, 7, 74.	2.4	25
21	Mesenchymal stem cell therapy to promote corneal allograft survival. Current Opinion in Organ Transplantation, 2016, 21, 559-567.	0.8	22
22	Development of a flow cytometry-based potency assay for measuring the in vitro immunomodulatory properties of mesenchymal stromal cells. Immunology Letters, 2016, 177, 38-46.	1.1	14
23	The Exosome ―A Naturally Secreted Nanoparticle and its Application to Wound Healing. Advanced Materials, 2016, 28, 5542-5552.	11.1	213
24	Corneal Immunosuppressive Mechanisms, Anterior Chamber-Associated Immune Deviation (ACAID) and Their Role in Allograft Rejection. Methods in Molecular Biology, 2016, 1371, 205-214.	0.4	15
25	Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies. PeerJ, 2016, 4, e2300.	0.9	55
26	Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Molecular Therapy, 2015, 23, 812-823.	3.7	877
27	TNFα and IL-1β influence the differentiation and migration of murine MSCs independently of the NF-κB pathway. Stem Cell Research and Therapy, 2014, 5, 104.	2.4	64
28	Chondrogenic Differentiation Increases Antidonor Immune Response to Allogeneic Mesenchymal Stem Cell Transplantation. Molecular Therapy, 2014, 22, 655-667.	3.7	76
29	Changes in immunological profile of allogeneic mesenchymal stem cells after differentiation: should we be concerned?. Stem Cell Research and Therapy, 2014, 5, 99.	2.4	61
30	Concise review: Adult mesenchymal stromal cell therapy for inflammatory diseases: How well are we joining the dots?. Stem Cells, 2013, 31, 2033-2041.	1.4	124
31	Gene Therapy Approaches to Prevent Corneal Graft Rejection: Where Do We Stand?. Ophthalmic Research, 2013, 50, 135-140.	1.0	9
32	Antiâ€donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far?. Immunology and Cell Biology, 2013, 91, 40-51.	1.0	205
33	Donor Bone Marrow–derived Dendritic Cells Prolong Corneal Allograft Survival and Promote an Intragraft Immunoregulatory Milieu. Molecular Therapy, 2013, 21, 2102-2112.	3.7	13
34	Allogeneic Murine Mesenchymal Stem Cells: Migration to Inflamed Joints In Vivo and Amelioration of Collagen Induced Arthritis When Transduced to Express CTLA4Ig. Stem Cells and Development, 2013, 22, 3203-3213.	1.1	27
35	Immunogenicity of allogeneic mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2012, 16, 2094-2103.	1.6	215
36	Adenoviral Transduction of Mesenchymal Stem Cells: In Vitro Responses and In Vivo Immune Responses after Cell Transplantation. PLoS ONE, 2012, 7, e42662.	1.1	31

THOMAS RITTER

#	Article	IF	CITATIONS
37	Influence of combined treatment of low dose rapamycin and cyclosporin A on corneal allograft survival. Graefe's Archive for Clinical and Experimental Ophthalmology, 2010, 248, 1447-1456.	1.0	28
38	Enhanced lipoplexâ€mediated gene expression in mesenchymal stem cells using reiterated nuclear localization sequence peptides. Journal of Gene Medicine, 2010, 12, 207-218.	1.4	38
39	Immunological Aspects of Allogeneic Mesenchymal Stem Cell Therapies. Human Gene Therapy, 2010, 21, 1641-1655.	1.4	272
40	Genetically modified mesenchymal stem cells and their clinical potential in acute cardiovascular disease. Discovery Medicine, 2010, 9, 219-23.	0.5	17
41	Novel gene therapeutic strategies for the induction of tolerance in cornea transplantation. Expert Review of Clinical Immunology, 2009, 5, 749-764.	1.3	12
42	Gene therapy in transplantation: Toward clinical trials. Current Opinion in Molecular Therapeutics, 2009, 11, 504-12.	2.8	2
43	Gene-Modified Mesenchymal Stem Cells Express Functionally Active Nerve Growth Factor on an Engineered Poly Lactic Glycolic Acid (PLGA) Substrate. Tissue Engineering - Part A, 2008, 14, 681-690.	1.6	48
44	Local Overexpression of Nerve Growth Factor in Rat Corneal Transplants Improves Allograft Survival. , 2007, 48, 1043.		45
45	Effects of Spironolactone on Corneal Allograft Survival in the Rat. Ophthalmic Research, 2007, 39, 325-329.	1.0	7
46	Effects of interleukin-12p40 gene transfer on rat corneal allograft survival. Transplant Immunology, 2007, 18, 101-107.	0.6	26
47	Gene transfer of cyto-protective molecules in corneal endothelial cells and cultured corneas: Analysis of protective effects in vitro and in vivo. Biochemical and Biophysical Research Communications, 2007, 357, 302-307.	1.0	13
48	The influence of inducible costimulator fusion protein (ICOSIg) gene transfer on corneal allograft survival. Graefe's Archive for Clinical and Experimental Ophthalmology, 2007, 245, 1515-1521.	1.0	14
49	Influence of local and systemic CTLA4Ig gene transfer on corneal allograft survival. Journal of Gene Medicine, 2006, 8, 459-467.	1.4	47
50	Gene therapy in immune-mediated diseases of the eye. Progress in Retinal and Eye Research, 2003, 22, 277-293.	7.3	16
51	Improvements in Gene Therapy. BioDrugs, 2002, 16, 3-10.	2.2	79
52	Antigen-Dependent Transgene Expression in Kidney Transplantation: A Novel Approach Using Gene-Engineered T Lymphocytes. Journal of the American Society of Nephrology: JASN, 2002, 13, 511-518.	3.0	8
53	Corneal Allograft Rejection: Current Understanding. Ophthalmologica, 2001, 215, 254-262.	1.0	23
54	Immune tolerance and gene therapy in transplantation. Trends in Immunology, 2000, 21, 12-14.	7.5	14

#	Article	IF	CITATIONS
55	STIMULATORY AND INHIBITORY ACTION OF CYTOKINES ON THE REGULATION OF hCMV-IE PROMOTER ACTIVITY IN HUMAN ENDOTHELIAL CELLS. Cytokine, 2000, 12, 1163-1170.	1.4	52
56	Adenovirus-Mediated Gene Transfer of Interleukin-4 to Corneal Endothelial Cells and Organ Cultured Corneas Leads to High IL-4 Expression. Experimental Eye Research, 1999, 69, 563-568.	1.2	36