List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1297348/publications.pdf Version: 2024-02-01

Ιιανιτίν Ητι

#	Article	IF	CITATIONS
1	Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environment International, 2014, 73, 413-422.	4.8	463
2	Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental Research, 2015, 140, 242-254.	3.7	385
3	Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmospheric Environment, 2014, 95, 598-609.	1.9	375
4	Associations of Mortality with Long-Term Exposures to Fine and Ultrafine Particles, Species and Sources: Results from the California Teachers Study Cohort. Environmental Health Perspectives, 2015, 123, 549-556.	2.8	325
5	One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmospheric Chemistry and Physics, 2016, 16, 10333-10350.	1.9	258
6	Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China. Science of the Total Environment, 2019, 662, 297-306.	3.9	167
7	Puzzling Haze Events in China During the Coronavirus (COVIDâ€19) Shutdown. Geophysical Research Letters, 2020, 47, e2020GL088533.	1.5	165
8	Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications, 2020, 11, 2844.	5.8	161
9	Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices. Environment International, 2015, 84, 17-25.	4.8	160
10	Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environment International, 2018, 115, 343-357.	4.8	158
11	Premature Mortality Attributable to Particulate Matter in China: Source Contributions and Responses to Reductions. Environmental Science & amp; Technology, 2017, 51, 9950-9959.	4.6	152
12	Source contributions and regional transport of primary particulate matter in China. Environmental Pollution, 2015, 207, 31-42.	3.7	142
13	Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmospheric Chemistry and Physics, 2017, 17, 77-92.	1.9	137
14	Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study. Science of the Total Environment, 2014, 499, 228-237.	3.9	136
15	Assessing Contributions of Agricultural and Nonagricultural Emissions to Atmospheric Ammonia in a Chinese Megacity. Environmental Science & Technology, 2019, 53, 1822-1833.	4.6	130
16	Source apportionment of PM2.5 in North India using source-oriented air quality models. Environmental Pollution, 2017, 231, 426-436.	3.7	120
17	The impact of power generation emissions on ambient PM2.5 pollution and human health in China and India. Environment International, 2018, 121, 250-259.	4.8	111
18	Sources and contents of air pollution affecting term low birth weight in Los Angeles County, California, 2001–2008. Environmental Research, 2014, 134, 488-495.	3.7	103

#	Article	IF	CITATIONS
19	Air pollution characteristics and health risks in Henan Province, China. Environmental Research, 2017, 156, 625-634.	3.7	101
20	A Statewide Nested Case–Control Study of Preterm Birth and Air Pollution by Source and Composition: California, 2001–2008. Environmental Health Perspectives, 2016, 124, 1479-1486.	2.8	94
21	Year-long simulation of gaseous and particulate air pollutants in India. Atmospheric Environment, 2018, 180, 244-255.	1.9	89
22	Severe particulate pollution days in China during 2013–2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions. Environmental Pollution, 2019, 248, 74-81.	3.7	89
23	Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model. Science of the Total Environment, 2017, 601-602, 1476-1487.	3.9	86
24	Characterization of black carbon-containing fine particles in Beijing during wintertime. Atmospheric Chemistry and Physics, 2019, 19, 447-458.	1.9	84
25	Driving Forces of Changes in Air Quality during the COVID-19 Lockdown Period in the Yangtze River Delta Region, China. Environmental Science and Technology Letters, 2020, 7, 779-786.	3.9	83
26	Combining Land-Use Regression and Chemical Transport Modeling in a Spatiotemporal Geostatistical Model for Ozone and PM _{2.5} . Environmental Science & Technology, 2016, 50, 5111-5118.	4.6	81
27	Ozone pollution over China and India: seasonality and sources. Atmospheric Chemistry and Physics, 2020, 20, 4399-4414.	1.9	79
28	Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model. Science of the Total Environment, 2018, 612, 462-471.	3.9	78
29	Fine particulate matter constituents and cause-specific mortality in China: A nationwide modelling study. Environment International, 2020, 143, 105927.	4.8	78
30	Attribution of Tropospheric Ozone to NO _{<i>x</i>} and VOC Emissions: Considering Ozone Formation in the Transition Regime. Environmental Science & Technology, 2019, 53, 1404-1412.	4.6	77
31	Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in Xi'an, China. Atmospheric Environment, 2014, 97, 182-194.	1.9	76
32	Low birth weight and air pollution in California: Which sources and components drive the risk?. Environment International, 2016, 92-93, 471-477.	4.8	74
33	Identifying PM _{2.5} and PM _{0.1} Sources for Epidemiological Studies in California. Environmental Science & Technology, 2014, 48, 4980-4990.	4.6	72
34	Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment. Chemosphere, 2019, 224, 202-211.	4.2	72
35	The Ozone–Climate Penalty: Past, Present, and Future. Environmental Science & Technology, 2013, 47, 14258-14266.	4.6	69
36	Source apportionment of sulfate and nitrate particulate matter in the Eastern United States and effectiveness of emission control programs. Science of the Total Environment, 2014, 490, 171-181.	3.9	67

#	Article	IF	CITATIONS
37	High-Resolution Spatiotemporal Modeling for Ambient PM _{2.5} Exposure Assessment in China from 2013 to 2019. Environmental Science & Technology, 2021, 55, 2152-2162.	4.6	67
38	Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China. Atmospheric Chemistry and Physics, 2017, 17, 13103-13118.	1.9	64
39	Source apportionment of summertime ozone in China using a source-oriented chemical transport model. Atmospheric Environment, 2019, 211, 79-90.	1.9	60
40	Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States. Science of the Total Environment, 2014, 473-474, 275-285.	3.9	58
41	Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China. Science of the Total Environment, 2017, 595, 505-514.	3.9	58
42	Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories. Environmental Pollution, 2018, 237, 756-766.	3.7	57
43	Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season. Chemosphere, 2021, 263, 128025.	4.2	57
44	Predicting Primary PM _{2.5} and PM _{0.1} Trace Composition for Epidemiological Studies in California. Environmental Science & amp; Technology, 2014, 48, 4971-4979.	4.6	56
45	First Chemical Characterization of Refractory Black Carbon Aerosols and Associated Coatings over the Tibetan Plateau (4730 m a.s.l). Environmental Science & Technology, 2017, 51, 14072-14082.	4.6	55
46	Simulated impacts of direct radiative effects of scattering and absorbing aerosols on surface layer aerosol concentrations in China during a heavily polluted event in February 2014. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5955-5975.	1.2	53
47	Impacts of power generation on air quality in China—part I: An overview. Resources, Conservation and Recycling, 2017, 121, 103-114.	5.3	51
48	Source contributions and potential reductions to health effects of particulate matter in India. Atmospheric Chemistry and Physics, 2018, 18, 15219-15229.	1.9	51
49	Associations between daily outpatient visits for respiratory diseases and ambient fine particulate matter and ozone levels in Shanghai, China. Environmental Pollution, 2018, 240, 754-763.	3.7	51
50	Investigating the PM2.5 mass concentration growth processes during 2013–2016 in Beijing and Shanghai. Chemosphere, 2019, 221, 452-463.	4.2	50
51	Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China. Atmospheric Chemistry and Physics, 2020, 20, 13455-13466.	1.9	49
52	Quantifying the impacts of inter-city transport on air quality in the Yangtze River Delta urban agglomeration, China: Implications for regional cooperative controls of PM2.5 and O3. Science of the Total Environment, 2021, 779, 146619.	3.9	48
53	Local and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern China. Atmospheric Chemistry and Physics, 2019, 19, 5791-5803.	1.9	47
54	Modeling atmospheric transport and fate of ammonia in North Carolina—Part II: Effect of ammonia emissions on fine particulate matter formation. Atmospheric Environment, 2008, 42, 3437-3451.	1.9	45

#	Article	IF	CITATIONS
55	Climate impact on airborne particulate matter concentrations in California using seven year analysis periods. Atmospheric Chemistry and Physics, 2010, 10, 11097-11114.	1.9	45
56	Relationships between greenness and low birth weight: Investigating the interaction and mediation effects of air pollution Environmental Research, 2019, 175, 124-132.	3.7	45
57	Sources and health risks of ambient polycyclic aromatic hydrocarbons in China. Science of the Total Environment, 2020, 698, 134229.	3.9	45
58	Particulate air quality model predictions using prognostic vs. diagnostic meteorology in central California. Atmospheric Environment, 2010, 44, 215-226.	1.9	43
59	Estimating ground level PM2.5 concentrations and associated health risk in India using satellite based AOD and WRF predicted meteorological parameters. Chemosphere, 2020, 255, 126969.	4.2	42
60	Impacts of Regional Transport on Particulate Matter Pollution in China: a Review of Methods and Results. Current Pollution Reports, 2017, 3, 182-191.	3.1	41
61	Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part I. Base case model results. Science of the Total Environment, 2015, 532, 831-839.	3.9	40
62	Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing. International Journal of Environmental Research and Public Health, 2018, 15, 602.	1.2	40
63	Associations of daily mortality with short-term exposure to PM2.5 and its constituents in Shanghai, China. Chemosphere, 2019, 233, 879-887.	4.2	40
64	Double high pollution events in the Yangtze River Delta from 2015 to 2019: Characteristics, trends, and meteorological situations. Science of the Total Environment, 2021, 792, 148349.	3.9	39
65	Simulation of summer ozone and its sensitivity to emission changes in China. Atmospheric Pollution Research, 2019, 10, 1543-1552.	1.8	38
66	Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors. Science of the Total Environment, 2018, 624, 355-365.	3.9	37
67	Persistent high PM2.5 pollution driven by unfavorable meteorological conditions during the COVID-19 lockdown period in the Beijing-Tianjin-Hebei region, China. Environmental Research, 2021, 198, 111186.	3.7	36
68	Impacts of power generation on air quality in China—Part II: Future scenarios. Resources, Conservation and Recycling, 2017, 121, 115-127.	5.3	34
69	Modelling secondary organic aerosols in China. National Science Review, 2017, 4, 806-809.	4.6	33
70	Regional sources of airborne ultrafine particle number and mass concentrations in California. Atmospheric Chemistry and Physics, 2019, 19, 14677-14702.	1.9	32
71	Mobile Source and Livestock Feed Contributions to Regional Ozone Formation in Central California. Environmental Science & amp; Technology, 2012, 46, 2781-2789.	4.6	31
72	Modelling air quality during the EXPLORE-YRD campaign – Part I. Model performance evaluation and impacts of meteorological inputs and grid resolutions. Atmospheric Environment, 2021, 246, 118131.	1.9	31

#	Article	IF	CITATIONS
73	Modelling air quality during the EXPLORE-YRD campaign – Part II. Regional source apportionment of ozone and PM2.5. Atmospheric Environment, 2021, 247, 118063.	1.9	30
74	Spatial and temporal variations in criteria air pollutants in three typical terrain regions in Shaanxi, China, during 2015. Air Quality, Atmosphere and Health, 2018, 11, 95-109.	1.5	29
75	Health risk associated with potential source regions of PM2.5 in Indian cities. Air Quality, Atmosphere and Health, 2019, 12, 327-340.	1.5	29
76	Health Burden and economic impacts attributed to PM2.5 and O3 in china from 2010 to 2050 under different representative concentration pathway scenarios. Resources, Conservation and Recycling, 2021, 173, 105731.	5.3	28
77	PM2.5 and O3 relationships affected by the atmospheric oxidizing capacity in the Yangtze River Delta, China. Science of the Total Environment, 2022, 810, 152268.	3.9	28
78	Influence of regional development policies and clean technology adoption on future air pollution exposure. Atmospheric Environment, 2010, 44, 552-562.	1.9	26
79	Long-term particulate matter modeling for health effect studies in California – Part 2: Concentrations and sources of ultrafine organic aerosols. Atmospheric Chemistry and Physics, 2017, 17, 5379-5391.	1.9	26
80	Modeling particulate nitrate in China: Current findings and future directions. Environment International, 2022, 166, 107369.	4.8	26
81	An IBBCEAS system for atmospheric measurements of glyoxal and methylglyoxal in the presence of high NO ₂ concentrations. Atmospheric Measurement Techniques, 2019, 12, 4439-4453.	1.2	25
82	Impacts of model resolution on predictions of air quality and associated health exposure in Nanjing, China. Chemosphere, 2020, 249, 126515.	4.2	23
83	Effects of using different exposure data to estimate changes in premature mortality attributable to PM2.5 and O3 in China. Environmental Pollution, 2021, 285, 117242.	3.7	23
84	Estimating 2013–2019 NO2 exposure with high spatiotemporal resolution in China using an ensemble model. Environmental Pollution, 2022, 292, 118285.	3.7	22
85	Resolving the interactions between population density and air pollution emissions controls in the San Joaquin Valley, USA. Journal of the Air and Waste Management Association, 2012, 62, 566-575.	0.9	21
86	Source contributions to poor atmospheric visibility in China. Resources, Conservation and Recycling, 2019, 143, 167-177.	5.3	21
87	Measurement of aerosol optical properties and their potential source origin in urban Beijing from 2013-2017. Atmospheric Environment, 2019, 206, 293-302.	1.9	21
88	Adverse Reproductive Health Outcomes and Exposure to Gaseous and Particulate-Matter Air Pollution in Pregnant Women. Research Report (health Effects Institute), 2016, 2016, 1-58.	1.6	21
89	Investigation of relationships between meteorological conditions and high PM10 pollution in a megacity in the western Yangtze River Delta, China. Air Quality, Atmosphere and Health, 2017, 10, 713-724.	1.5	20
90	Diagnostic analysis of regional ozone pollution in Yangtze River Delta, China: A case study in summer 2020. Science of the Total Environment, 2022, 812, 151511.	3.9	20

#	Article	IF	CITATIONS
91	Evaluation of particulate matter deposition in the human respiratory tract during winter in Nanjing using size and chemically resolved ambient measurements. Air Quality, Atmosphere and Health, 2019, 12, 529-538.	1.5	19
92	Evaluation of regional transport of PM2.5 during severe atmospheric pollution episodes in the western Yangtze River Delta, China. Journal of Environmental Management, 2021, 293, 112827.	3.8	19
93	Projected air quality and health benefits from future policy interventions in India. Resources, Conservation and Recycling, 2019, 142, 232-244.	5.3	18
94	Sensitive Detection of Ambient Formaldehyde by Incoherent Broadband Cavity Enhanced Absorption Spectroscopy. Analytical Chemistry, 2020, 92, 2697-2705.	3.2	18
95	Spatial-temporal variations and source contributions to forest ozone exposure in China. Science of the Total Environment, 2019, 674, 189-199.	3.9	17
96	Using Chemical Transport Model Predictions To Improve Exposure Assessment of PM _{2.5} Constituents. Environmental Science and Technology Letters, 2019, 6, 456-461.	3.9	16
97	Measurement of gaseous and particulate formaldehyde in the Yangtze River Delta, China. Atmospheric Environment, 2020, 224, 117114.	1.9	16
98	Impacts of water partitioning and polarity of organic compounds on secondary organic aerosol over eastern China. Atmospheric Chemistry and Physics, 2020, 20, 7291-7306.	1.9	16
99	Long-term health impact of PM2.5 under whole-year COVID-19 lockdown in China. Environmental Pollution, 2021, 290, 118118.	3.7	16
100	Process-based and observation-constrained SOA simulations in China: the role of semivolatile and intermediate-volatility organic compounds and OH levels. Atmospheric Chemistry and Physics, 2021, 21, 16183-16201.	1.9	15
101	Influence of transboundary air pollution and meteorology on air quality in three major cities of Anhui Province, China. Journal of Cleaner Production, 2021, 329, 129641.	4.6	15
102	Short-term exposure to fine particulate matter constituents and mortality: case-crossover evidence from 32 counties in China. Science China Life Sciences, 2022, 65, 2527-2538.	2.3	15
103	Strategies to reduce PM2.5 and O3 together during late summer and early fall in San Joaquin Valley, California. Atmospheric Research, 2021, 258, 105633.	1.8	14
104	Significant reduction in atmospheric organic and elemental carbon in PM2.5 in 2+26 cities in northern China. Environmental Research, 2022, 211, 113055.	3.7	14
105	Twelve-Year Trends of PM10and Visibility in the Hefei Metropolitan Area of China. Advances in Meteorology, 2016, 2016, 1-9.	0.6	13
106	Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region. Environmental Pollution, 2021, 287, 117624.	3.7	13
107	PM2.5 constituents and mortality from a spectrum of causes in Guangzhou, China. Ecotoxicology and Environmental Safety, 2021, 222, 112498.	2.9	13
108	Coordinated health effects attributable to particulate matter and other pollutants exposures in the North China Plain. Environmental Research, 2022, 208, 112671.	3.7	13

#	Article	IF	CITATIONS
109	Carbon dioxide mitigation co-benefit analysis of energy-related measures in the Air Pollution Prevention and Control Action Plan in the Jing-Jin-Ji region of China. Resources Conservation & Recycling X, 2019, 1, 100006.	4.2	12
110	Chemical and Optical Properties of Atmospheric Aerosols during the Polluted Periods in a Megacity in the Yangtze River Delta, China. Aerosol and Air Quality Research, 2019, 19, 103-117.	0.9	12
111	Modeling Atmospheric Age Distribution of Elemental Carbon Using a Regional Age-Resolved Particle Representation Framework. Environmental Science & Technology, 2019, 53, 270-278.	4.6	11
112	Meteorological Impact on Winter PM _{2.5} Pollution in Delhi: Present and Future Projection Under a Warming Climate. Geophysical Research Letters, 2021, 48, e2021GL093722.	1.5	11
113	Estimation of secondary PM _{2.5} in China and the United States using a multi-tracer approach. Atmospheric Chemistry and Physics, 2022, 22, 5495-5514.	1.9	11
114	Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part II. Emission sector and source region contributions. Science of the Total Environment, 2015, 532, 840-848.	3.9	10
115	Premature Mortality Associated with Exposure to Outdoor Black Carbon and Its Source Contributions in China. Resources, Conservation and Recycling, 2021, 170, 105620.	5.3	10
116	Evaluation of Long-Term Modeling Fine Particulate Matter and Ozone in China During 2013–2019. Frontiers in Environmental Science, 2022, 10, .	1.5	10
117	Chemical Characterization of Two Seasonal PM2.5 Samples in Nanjing and Its Toxicological Properties in Three Human Cell Lines. Environments - MDPI, 2019, 6, 42.	1.5	9
118	Recent Progress in Impacts of Mixing State on Optical Properties of Black Carbon Aerosol. Current Pollution Reports, 2020, 6, 380-398.	3.1	9
119	Health and economic losses attributable to PM2.5 and ozone exposure in Handan, China. Air Quality, Atmosphere and Health, 2021, 14, 605-615.	1.5	9
120	High spatial resolution land-use regression model for urban ultrafine particle exposure assessment in Shanghai, China. Science of the Total Environment, 2022, 816, 151633.	3.9	8
121	Atmospheric Age Distribution of Primary and Secondary Inorganic Aerosols in a Polluted Atmosphere. Environmental Science & Technology, 2021, 55, 5668-5676.	4.6	7
122	Assessing short-term impacts of PM2.5 constituents on cardiorespiratory hospitalizations: Multi-city evidence from China. International Journal of Hygiene and Environmental Health, 2022, 240, 113912.	2.1	7
123	Impacts of emissions along the lower Yangtze River on air quality and public health in the Yangtze River delta, China. Atmospheric Pollution Research, 2022, 13, 101420.	1.8	7
124	Development of high-resolution spatio-temporal models for ambient air pollution in a metropolitan area of China from 2013 to 2019. Chemosphere, 2022, 291, 132918.	4.2	6
125	Airborne particle number concentrations in China: A critical review. Environmental Pollution, 2022, 307, 119470.	3.7	6
126	Integrated process analysis retrieval of changes in ground-level ozone and fine particulate matter during the COVID-19 outbreak in the coastal city of Kannur, India. Environmental Pollution, 2022, 307, 119468.	3.7	6

#	Article	IF	CITATIONS
127	Temporal variation of PM2.5-associated health effects in Shijiazhuang, Hebei. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	5
128	Evaluation of a highly condensed SAPRC chemical mechanism and two emission inventories for ozone source apportionment and emission control strategy assessments in China. Science of the Total Environment, 2022, 813, 151922.	3.9	5
129	Contribution of biogenic sources to secondary organic aerosol in the summertime in Shaanxi, China. Chemosphere, 2020, 254, 126815.	4.2	4
130	Ageâ€Resolved Source and Region Contributions to Fine Particulate Matter During an Extreme Haze Episode in China. Geophysical Research Letters, 2021, 48, .	1.5	4
131	Assessment of Sectoral NO _{<i>x</i>} Emission Reductions During COVIDâ€19 Lockdown Using Combined Satellite and Surface Observations and Sourceâ€Oriented Model Simulations. Geophysical Research Letters, 2022, 49, .	1.5	4
132	Analysis of coordinated relationship between PM _{2.5} and ozone and its affecting factors on different timescales. Chinese Science Bulletin, 2022, 67, 2018-2028.	0.4	3
133	Spatial and Temporal Variations in the Atmospheric Age Distribution of Primary and Secondary Inorganic Aerosols in China. Engineering, 2023, 28, 117-129.	3.2	2
134	Assessing the Impacts of Climate Change on Meteorology and Air Stagnation in China Using a Dynamical Downscaling Method. Frontiers in Environmental Science, 2022, 10, .	1.5	1
135	Estimating 2005-2019 NO2 Exposure with High Spatiotemporal Resolution in China Using an Ensemble Model. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
136	Size Distributions and Seasonal Variations of Water-Soluble Inorganic Particulate Matter at a Suburban Site in Nanjing, China. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	1.2	0
137	Exploring a more reasonable temperature exposure calculation method based on individual exposure survey and city-scale heat exposure impact assessment. Environmental Research, 2022, 212, 113317.	3.7	0