Juan Carlos Matos Franco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1297163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A critical review of stress intensity factor solutions for surface cracks in round bars subjected to tension loading. Engineering Failure Analysis, 2009, 16, 794-809.	4.0	60
2	Micro- and macro-approach to the fatigue crack growth in progressively drawn pearlitic steels at different R-ratios. International Journal of Fatigue, 2009, 31, 2014-2021.	5.7	55
3	Numerical modelling of crack shape evolution for surface flaws in round bars under tensile loading. Engineering Failure Analysis, 2009, 16, 618-630.	4.0	42
4	Fatigue crack propagation in cold drawn steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 468-470, 267-272.	5.6	31
5	Tensile Fracture Behavior of Progressively-Drawn Pearlitic Steels. Metals, 2016, 6, 114.	2.3	31
6	Influence of Microstructure on Strength and Ductility in Fully Pearlitic Steels. Metals, 2016, 6, 318.	2.3	30
7	Fatigue and fracture paths in cold drawn pearlitic steel. Engineering Fracture Mechanics, 2010, 77, 2024-2032.	4.3	29
8	Microstructure and Mechanical Properties in Progressively Drawn Pearlitic Steel. Materials Transactions, 2014, 55, 93-98.	1.2	22
9	Numerical modelling of cracking path in round bars subjected to cyclic tension and bending. International Journal of Fatigue, 2014, 58, 20-27.	5.7	20
10	Strength anisotropy and mixed mode fracture in heavily drawn pearlitic steel. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 1178-1186.	3.4	18
11	A macro- and micro-approach to the anisotropic fatigue behaviour of hot-rolled and cold-drawn pearlitic steel. Engineering Fracture Mechanics, 2014, 123, 70-76.	4.3	16
12	Initiation and propagation of fatigue cracks in cold-drawn pearlitic steel wires. Theoretical and Applied Fracture Mechanics, 2017, 92, 410-419.	4.7	16
13	Numerical and experimental analyses of the plasticity-induced fatigue crack growth in high-strength steels. Construction and Building Materials, 2011, 25, 3935-3940.	7.2	15
14	Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel. Materials, 2015, 8, 7439-7446.	2.9	15
15	Failure analysis of a lifting platform for tree pruning. Engineering Failure Analysis, 2010, 17, 739-747.	4.0	13
16	Compliance evolution in round cracked bars under tensile fatigue. Engineering Fracture Mechanics, 2011, 78, 3243-3252.	4.3	11
17	Analysis of the Bauschinger Effect in Cold Drawn Pearlitic Steels. Metals, 2020, 10, 114.	2.3	11
18	Evaluation by Sharp Indentation of Anisotropic Plastic Behaviour in Progressively Drawn Pearlitic Steel. ISIJ International, 2011, 51, 843-848.	1.4	11

#	Article	IF	CITATIONS
19	Role of the microstructure on the mechanical properties of fully pearlitic eutectoid steels. Frattura Ed Integrita Strutturale, 2014, 8, 424-430.	0.9	10
20	Aspect ratio evolution associated with surface cracks in sheets subjected to fatigue. International Journal of Fatigue, 2016, 92, 588-595.	5.7	10
21	Fatigue behaviour of bolted joints. Metals and Materials International, 2012, 18, 553-558.	3.4	9
22	Cleavage Stress Required to Produce Fracture Path Deflection in Cold-Drawn Prestressing Steel Wires. International Journal of Fracture, 2007, 144, 189-196.	2.2	8
23	Critical stress intensity factors in steel cracked wires. Materials & Design, 2011, 32, 4424-4429.	5.1	8
24	Influence of Residual Stress Field on the Fatigue Crack Propagation in Prestressing Steel Wires. Materials, 2015, 8, 7589-7597.	2.9	8
25	Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law. Materials, 2017, 10, 439.	2.9	8
26	Aspect Ratio Evolution in Embedded, Surface, and Corner Cracks in Finite-Thickness Plates under Tensile Fatigue Loading. Applied Sciences (Switzerland), 2017, 7, 746.	2.5	8
27	Effect of sudden load decrease on the fatigue crack growth in cold drawn prestressing steel. International Journal of Fatigue, 2015, 76, 53-59.	5.7	7
28	Micro- and Macro-Approach to the Fatigue Crack Propagation in High-Strength Pearlitic Steel Wires. Key Engineering Materials, 2007, 348-349, 681-684.	0.4	6
29	Numerical Modeling of Plasticity-Induced Fatigue Crack Growth Retardation Due to Deflection in the Near-Tip Area. Metals, 2021, 11, 541.	2.3	6
30	Notch effect on the stress intensity factor in tension-loaded circumferentially cracked bars. Engineering Fracture Mechanics, 2018, 202, 436-444.	4.3	5
31	Evolution of crack paths and compliance in round bars under cyclic tension and bending. Theoretical and Applied Fracture Mechanics, 2015, 80, 104-110.	4.7	4
32	Fatigue crack growth in round bars for rock anchorages: the role of residual stresses. Procedia Structural Integrity, 2016, 2, 2734-2741.	0.8	4
33	Paris Law-Based Approach to Fatigue Crack Growth in Notched Plates under Tension Loading. Procedia Structural Integrity, 2017, 5, 1299-1303.	0.8	4
34	Crack tip field in eccentric circumferentially cracked round bar (CCRB) under tensile loading. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 2153-2161.	3.4	4
35	Hydrogen embrittlement and notch tensile strength of pearlitic steel: a numerical approach. Procedia Structural Integrity, 2020, 28, 2444-2449.	0.8	4
36	Anisotropic Fatigue & Fracture Behaviour in Hot-Rolled and Cold-Drawn Pearlitic Steel Wires. Key Engineering Materials, 2016, 713, 103-106.	0.4	3

Juan Carlos Matos Franco

#	Article	IF	CITATIONS
37	Effect of the Crack Tip Bifurcation on the Plasticity-Induced Fatigue Propagation in Metallic Materials. Materials, 2021, 14, 3385.	2.9	3
38	Fatigue and fracture crack paths in spheroidized steel. Procedia Structural Integrity, 2020, 28, 2378-2381.	0.8	3
39	Anisotropic Fracture Behaviour of Progressively Drawn Pearlitic Steel. Key Engineering Materials, 0, 452-453, 1-4.	0.4	2
40	Influence of the Microstructure of Eutectoid Steel on the Cyclic Crack Propagation: Pearlite and Spheroidite. International Journal of Fracture, 2011, 171, 209-215.	2.2	2
41	Multi-Scale Approach to the Fatigue Crack Propagation in High-Strength Pearlitic Steel Wires. Journal of ASTM International, 2008, 5, 1-15.	0.2	2
42	Stress intensity factor for an eccentric circular inner crack in a round bar subjected to tensile loading. Procedia Structural Integrity, 2020, 28, 2382-2385.	0.8	2
43	Macro- and micro-approach to locally multiaxial fatigue crack paths in oriented and non-oriented pearlitic microstructures. Procedia Structural Integrity, 2020, 28, 2396-2403.	0.8	2
44	Fatigue performance of cold drawn prestressing steel: The effect of sudden load changes. Procedia Engineering, 2011, 10, 3546-3551.	1.2	1
45	Transient and Steady State Regimes of Fatigue Crack Growth in High Strength Steel. Key Engineering Materials, 2012, 525-526, 553-556.	0.4	1
46	Environmentally-assisted fatigue crack growth in prestressing steel wires. Materials Science, 2012, 47, 764-772.	0.9	1
47	Influence of surface defects on the fatigue crack initiation in pearlitic steel. MATEC Web of Conferences, 2014, 12, 06008.	0.2	1
48	Evolution of crack paths and compliance in round bars under cyclic tension and bending. Frattura Ed Integrita Strutturale, 2014, 8, 182-190.	0.9	1
49	Fracture behaviour of slightly hypereutectoid steel with different degree of spheroidization. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 800-806.	3.4	1
50	Hydrogen-Assisted Fatigue Propagation in Corner Cracks at Holes Located in Plates under Tensile Loading. Metals, 2021, 11, 552.	2.3	1
51	Stress Intensity Factors for Embedded, Surface, and Corner Cracks in Finite-Thickness Plates Subjected to Tensile Loading. Materials, 2021, 14, 2807.	2.9	1
52	Influence of crack micro-roughness on the plasticity-induced fatigue propagation in high strength steel. Frattura Ed Integrita Strutturale, 2017, 11, 62-65.	0.9	1
53	Multi-Scale Approach to the Fatigue Crack Propagation in High-Strength Pearlitic Steel Wires. , 2009, , 439-458.		1
54	Corrosion-Fatigue of High Strength Steel Bars: Evolution of Crack Aspect Ratio. Key Engineering Materials, 0, 488-489, 1-4.	0.4	0

#	Article	IF	CITATIONS
55	Initiation of Fatigue Cracks in Bolted Joints. Key Engineering Materials, 0, 577-578, 549-552.	0.4	0
56	Fatigue cracking in high-strength cold-drawn pearlitic steel wires for anchorage in rocks. Procedia Structural Integrity, 2016, 2, 2330-2337.	0.8	0
57	Damage evolution in plates subjected to fatigue loading. Journal of Physics: Conference Series, 2017, 842, 012072.	0.4	0
58	Modeling of Surface Crack Advance in Round Wires Subjected to Cyclic Loading. , 2012, , 126-135.		0
59	Modeling of Surface Crack Advance in Round Wires Subjected to Cyclic Loading. Journal of ASTM International, 2012, 9, 1-7.	0.2	0
60	Strength Anisotropy in Prestressing Steel Wires. Advanced Structured Materials, 2012, , 259-270.	0.5	0
61	Evolution of Crack Aspect Ratio in Sheets Under Tension and Bending Cyclic Loading. , 2014, , 263-272.		0
62	Fatigue Crack Growth in Pre-Stressing Steel Wires: Transient and Steady-State Regimes. , 2014, , 251-261.		0
63	Crack tip fields and mixed mode fracture behaviour of progressively drawn pearlitic steel. Frattura Ed Integrita Strutturale, 2015, 9, 221-228.	0.9	0
64	Crack tip field in circumferentially-cracked round bar (CCRB) in tension affected by loss of axial symmetry. Frattura Ed Integrita Strutturale, 2017, 11, 139-142.	0.9	0
65	Estimation of Critical Stress Intensity Factor in Steel Cracked Wires. , 2006, , 215-216.		0
66	Analysis of near-tip fatigue crack path bifurcation in metallic materials. Procedia Structural Integrity, 2022, 39, 479-483.	0.8	0
67	A modified Paris Law approach to fatigue crack propagation in cold drawn pearlitic steel. Procedia Structural Integrity, 2022, 41, 718-723.	0.8	0