Bangshang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1297069/publications.pdf

Version: 2024-02-01

236612 223531 2,385 46 25 46 citations h-index g-index papers 47 47 47 3427 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Microplastics in sediments of the Changjiang Estuary, China. Environmental Pollution, 2017, 225, 283-290.	3.7	528
2	Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environmental Pollution, 2018, 234, 448-456.	3.7	426
3	Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) inÂvitro. Environmental Pollution, 2016, 212, 627-635.	3.7	131
4	Hyperbranched polymers for bioimaging. RSC Advances, 2013, 3, 2071-2083.	1.7	92
5	Supramolecular amphiphilic multiarm hyperbranched copolymer: synthesis, self-assembly and drug delivery applications. Polymer Chemistry, 2013, 4, 85-94.	1.9	75
6	Reversible photoisomerization of azobenzene-containing polymeric systems driven by visible light. Polymer Chemistry, 2013, 4, 912.	1.9	74
7	Antibacterial activity, cytotoxicity and mechanical behavior of nano-enhanced denture base resin with different kinds of inorganic antibacterial agents. Dental Materials Journal, 2017, 36, 693-699.	0.8	71
8	Construction and Application of a pH-Sensitive Nanoreactor via a Double-Hydrophilic Multiarm Hyperbranched Polymer. Langmuir, 2010, 26, 8875-8881.	1.6	62
9	Construction and application of pH-triggered cleavable hyperbranched polyacylhydrazone for drug delivery. Polymer Chemistry, 2011, 2, 1761.	1.9	52
10	The potential of pH-responsive PEG-hyperbranched polyacylhydrazone micelles for cancer therapy. Biomaterials, 2014, 35, 3132-3144.	5.7	50
11	Photodynamic effects of chlorin e6 attached to single wall carbon nanotubes through noncovalent interactions. Carbon, 2012, 50, 1681-1689.	5 . 4	44
12	Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Applied Surface Science, 2017, 393, 299-308.	3.1	43
13	Light-responsive linear-dendritic amphiphiles and their nanomedicines for NIR-triggered drug release. Polymer Chemistry, 2014, 5, 1605-1613.	1.9	40
14	Emission enhancement of conjugated polymers through self-assembly of unimolecular micelles to multi-micelle aggregates. Chemical Communications, 2011, 47, 9678.	2.2	38
15	Design and synthesis of thermo-responsive hyperbranched poly(amine-ester)s as acid-sensitive drug carriers. Polymer Chemistry, 2011, 2, 1661.	1.9	37
16	Effect of silver-supported materials on the mechanical and antibacterial properties of reinforced acrylic resin composites. Materials & Design, 2015, 65, 1245-1252.	5.1	37
17	Chlorin e6 and polydopamine modified gold nanoflowers for combined photothermal and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 2128-2138.	2.9	37
18	Control of the Optical Properties of a Star Copolymer with a Hyperbranched Conjugated Polymer Core and Poly(ethylene glycol) Arms by Selfâ€Assembly . Chemistry - A European Journal, 2010, 16, 12710-12717.	1.7	36

#	Article	IF	CITATIONS
19	Protein resistant properties of polymers with different branched architecture on a gold surface. Journal of Materials Chemistry, 2012, 22, 23852.	6.7	34
20	Wet-chemical synthesis of Mg-doped hydroxyapatite nanoparticles by step reaction and ion exchange processes. Journal of Materials Chemistry B, 2013, 1, 6551.	2.9	34
21	An enzyme-responsive membrane for antibiotic drug release and local periodontal treatment. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110454.	2.5	34
22	Bioreducible unimolecular micelles based on amphiphilic multiarm hyperbranched copolymers for triggered drug release. Science China Chemistry, 2010, 53, 2497-2508.	4.2	31
23	GFP-inspired fluorescent polymer. Polymer Chemistry, 2012, 3, 1975.	1.9	31
24	Hyperbranched glycoconjugated polymer from natural small molecule kanamycin as a safe and efficient gene vector. Polymer Chemistry, 2011, 2, 2674.	1.9	29
25	Synthesis of backbone thermo and pH dualâ€responsive hyperbranched poly(amineâ€ether)s through protonâ€transfer polymerization. Journal of Polymer Science Part A, 2011, 49, 966-975.	2.5	26
26	Low Temperature and Template-Free Synthesis of Hollow Hydroxy Zinc Phosphate Nanospheres and Their Application in Drug Delivery. Langmuir, 2013, 29, 12275-12283.	1.6	26
27	Development of a multifunctional gold nanoplatform for combined chemo-photothermal therapy against oral cancer. Nanomedicine, 2020, 15, 661-676.	1.7	26
28	Doubly Hydrophilic Multiarm Hyperbranched Polymers with Acylhydrazone Linkages as Acidâ€Sensitive Drug Carriers. Macromolecular Bioscience, 2011, 11, 1553-1562.	2.1	25
29	Preparation and Characterization of Paclitaxel/Chitosan Nanosuspensions for Drug Delivery System and Cytotoxicity Evaluation In Vitro. Advanced Fiber Materials, 2019, 1, 152-162.	7.9	21
30	Paclitaxel/Chitosan Nanosupensions Provide Enhanced Intravesical Bladder Cancer Therapy with Sustained and Prolonged Delivery of Paclitaxel. ACS Applied Bio Materials, 2018, 1, 1992-2001.	2.3	20
31	Synthesis and self-assembly of nonamphiphilic hyperbranched polyoximes. Soft Matter, 2012, 8, 10017.	1.2	18
32	Backboneâ€Thermoresponsive Hyperbranched Polyglycerol by Random Copolymerization of Glycidol and 3â€Methylâ€3â€(hydroxymethyl)oxetane. Macromolecular Chemistry and Physics, 2011, 212, 1056-1062.	1.1	17
33	Effect of branching architecture on the optical properties of polyazomethines. Polymer Chemistry, 2012, 3, 421-428.	1.9	16
34	Hydroxyapatite–Bovine Serum Albumin–Paclitaxel Nanoparticles for Locoregional Treatment of Osteosarcoma. Advanced Healthcare Materials, 2021, 10, e2000573.	3.9	16
35	Tunable construction of transition metal-coordinated helicene cages. Chinese Chemical Letters, 2021, 32, 3988-3992.	4.8	13
36	Facile fabrication and application of Au@MSN nanocomposites with a supramolecular star-copolymer template. Journal of Materials Chemistry, 2011, 21, 12369.	6.7	12

#	Article	IF	CITATIONS
37	Toward Scalable Fabrication of Hierarchical Silica Capsules with Integrated Microâ€, Mesoâ€, and Macropores. Small, 2016, 12, 1797-1805.	5.2	12
38	Physiochemical properties and bioapplication of nano- and microsized hydroxy zinc phosphate particles modulated by reaction temperature. Journal of Materials Chemistry B, 2015, 3, 1301-1312.	2.9	11
39	Silver-hydroxyapatite nanocomposites prepared by three sequential reaction steps in one pot and their bioactivities in vitro. Materials Science and Engineering C, 2021, 120, 111655.	3.8	11
40	Micro-/nanofibers prepared via co-assembly of paclitaxel and dextran. Carbohydrate Polymers, 2017, 157, 613-619.	5.1	8
41	A new twoâ€phase route to cadmium sulfide quantum dots using amphiphilic hyperbranched polymers as unimolecular nanoreactors. Journal of Applied Polymer Science, 2011, 120, 991-997.	1.3	5
42	Synthesis of nanostructured barium phosphate and its application in micro-computed tomography of mouse brain vessels in ex vivo. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	5
43	Synthesis and characterization of pure strontium apatite particles and nanoporous scaffold prepared by dextrose-templated method. Materials Research Express, 2018, 5, 025002.	0.8	5
44	Preparation and evaluation of PCLA2575 membranes loaded ornidazole <i>in vitro</i> . Journal of Bioactive and Compatible Polymers, 2017, 32, 615-627.	0.8	4
45	Proteoglycan 4 predicts tribological properties of repaired cartilage tissue. Theranostics, 2020, 10, 2538-2552.	4.6	4
46	Antimicrobial properties, cytotoxicity, colour and mechanical behavior of light-cured resin composites containing modified Novaron., 0, 4, e19.		1