Joachim Venus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1296733/publications.pdf

Version: 2024-02-01

186209 223716 2,321 76 28 46 h-index citations g-index papers 80 80 80 2116 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-Level fermentative production of Lactic acid from bread waste under Non-sterile conditions with a circular biorefining approach and zero waste discharge. Fuel, 2022, 313, 122976.	3.4	17
2	Chemical and Enzymatic Synthesis of Biobased Xylo-Oligosaccharides and Fermentable Sugars from Wheat Straw for Food Applications. Polymers, 2022, 14, 1336.	2.0	18
3	Potential Role of Sequential Solid-State and Submerged-Liquid Fermentations in a Circular Bioeconomy. Fermentation, 2021, 7, 76.	1.4	23
4	Biorefinery Concept Employing Bacillus coagulans: LX-Lignin and L-(+)-Lactic Acid from Lignocellulose. Microorganisms, 2021, 9, 1810.	1.6	12
5	Integration of Solid State and Submerged Fermentations for the Valorization of Organic Municipal Solid Waste. Journal of Fungi (Basel, Switzerland), 2021, 7, 766.	1.5	30
6	Editorial: Recent Advances in Microbial Biotechnology for the Food Industry. Frontiers in Microbiology, 2021, 12, 746636.	1.5	1
7	Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or D-2,3-butanediol using bakery waste. Bioresource Technology, 2021, 335, 125155.	4.8	24
8	Influence of the Initial Sugar Concentration and Supplementation with Yeast Extract on Succinic Acid Fermentation in a Lactose-Based Medium. Fermentation, 2021, 7, 221.	1.4	2
9	Current Advances in Separation and Purification of Second-Generation Lactic Acid. Separation and Purification Reviews, 2020, 49, 159-175.	2.8	39
10	Organic fraction of municipal solid waste for the production of L-lactic acid with high optical purity. Journal of Cleaner Production, 2020, 247, 119165.	4.6	53
11	Combining the production of L-lactic acid with the production of feed protein concentrates from alfalfa. Journal of Biotechnology, 2020, 323, 180-188.	1.9	7
12	Batch and Continuous Lactic Acid Fermentation Based on A Multi-Substrate Approach. Microorganisms, 2020, 8, 1084.	1.6	24
13	L-(+)-Lactic Acid from Reed: Comparing Various Resources for the Nutrient Provision of B. coagulans. Resources, 2020, 9, 89.	1.6	8
14	Assessment of different Bacillus coagulans strains for l-lactic acid production from defined media and gardening hydrolysates: Effect of lignocellulosic inhibitors. Journal of Biotechnology, 2020, 323, 9-16.	1.9	29
15	High L(+)-lactic acid productivity in continuous fermentations using bakery waste and lucerne green juice as renewable substrates. Bioresource Technology, 2020, 316, 123949.	4.8	37
16	A Simple Biorefinery Concept to Produce 2G-Lactic Acid from Sugar Beet Pulp (SBP): A High-Value Target Approach to Valorize a Waste Stream. Molecules, 2020, 25, 2113.	1.7	21
17	Production of Lactic Acid from Carob, Banana and Sugarcane Lignocellulose Biomass. Molecules, 2020, 25, 2956.	1.7	17
18	Limited life cycle and cost assessment for the bioconversion of ligninâ€derived aromatics into adipic acid. Biotechnology and Bioengineering, 2020, 117, 1381-1393.	1.7	32

#	Article	IF	Citations
19	Valorising Agro-industrial Wastes within the Circular Bioeconomy Concept: the Case of Defatted Rice Bran with Emphasis on Bioconversion Strategies. Fermentation, 2020, 6, 42.	1.4	35
20	From Upstream to Purification: Production of Lactic Acid from the Organic Fraction of Municipal Solid Waste. Waste and Biomass Valorization, 2020, 11, 5247-5254.	1.8	17
21	Valorisation of solid biowastes: The lactic acid alternative. Process Biochemistry, 2020, 99, 222-235.	1.8	28
22	Assessing the organic fraction of municipal solid wastes for the production of lactic acid. Biochemical Engineering Journal, 2019, 150, 107251.	1.8	53
23	Production and Purification of l-lactic Acid in Lab and Pilot Scales Using Sweet Sorghum Juice. Fermentation, 2019, 5, 36.	1.4	31
24	Restructuring the Conventional Sugar Beet Industry into a Novel Biorefinery: Fractionation and Bioconversion of Sugar Beet Pulp into Succinic Acid and Value-Added Coproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 6569-6579.	3.2	70
25	Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresource Technology Reports, 2019, 6, 26-31.	1.5	43
26	Recent Advances in D-Lactic Acid Production from Renewable Resources. Food Technology and Biotechnology, 2019, 57, 293-304.	0.9	47
27	A review on the current developments in continuous lactic acid fermentations and case studies utilising inexpensive raw materials. Process Biochemistry, 2019, 79, 1-10.	1.8	79
28	Evaluation of various <i>Bacillus coagulans </i> isolates for the production of high purity Lâ€lactic acid using defatted rice bran hydrolysates. International Journal of Food Science and Technology, 2019, 54, 1321-1329.	1.3	36
29	Co-fermentation of the main sugar types from a beechwood organosolv hydrolysate by several strains of Bacillus coagulans results in effective lactic acid production. Biotechnology Reports (Amsterdam,) Tj ETQq1	1 0. 284 314	1 rgB∏ /Over
30	From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metabolic Engineering, 2018, 47, 279-293.	3.6	225
31	Centralized and decentralized utilization of organic residues for lactic acid production. Journal of Cleaner Production, 2018, 172, 778-785.	4.6	29
32	Membrane Technologies for Lactic Acid Separation from Fermentation Broths Derived from Renewable Resources. Membranes, 2018, 8, 94.	1.4	30
33	Stoffliche Nutzung nachwachsender Roh- und Reststoffe in Bioraffinerien. Chemie-Ingenieur-Technik, 2018, 90, 1159-1159.	0.4	0
34	Different Strategies To Improve Lactic Acid Productivity Based on Microorganism Physiology and Optimum Operating Conditions. Industrial & Engineering Chemistry Research, 2018, 57, 10118-10125.	1.8	8
35	Detoxification of sugarcane-derived hemicellulosic hydrolysate using a lactic acid producing strain. Journal of Biotechnology, 2018, 278, 56-63.	1.9	25
36	Technical and economic assessment of food waste valorization through a biorefinery chain. Renewable and Sustainable Energy Reviews, 2018, 94, 38-48.	8.2	66

#	Article	IF	CITATIONS
37	Separation of lactic acid and recovery of salt-ions from fermentation broth. Journal of Chemical Technology and Biotechnology, 2017, 92, 504-511.	1.6	22
38	Biotechnological Production of Organic Acids from Renewable Resources. Advances in Biochemical Engineering/Biotechnology, 2017, 166, 373-410.	0.6	16
39	Model-based characterisation of growth performance and I-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium. New Biotechnology, 2017, 37, 180-193.	2.4	16
40	Biosurfactant production by Aureobasidium pullulans in stirred tank bioreactor: New approach to understand the influence of important variables in the process. Bioresource Technology, 2017, 243, 264-272.	4.8	40
41	A brief dataset on the model-based evaluation of the growth performance of Bacillus coagulans and l-lactic acid production in a lignin-supplemented medium. Data in Brief, 2017, 11, 236-244.	0.5	0
42	Investigation of spiral-wound membrane modules for the cross-flow nanofiltration of fermentation broth obtained from a pilot plant fermentation reactor for the continuous production of lactic acid. Bioresources and Bioprocessing, 2017, 4, 4.	2.0	8
43	Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. Journal of Cleaner Production, 2017, 143, 615-623.	4.6	152
44	Feedstock flexibility in sustainable chemistry: Bridging sectors still not sufficiently familiar with each other $\hat{a} \in \mathcal{E}$ Showcases of ongoing and emerging initiatives. Current Opinion in Green and Sustainable Chemistry, 2017, 8, 24-29.	3.2	11
45	Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. Bioresource Technology, 2017, 241, 508-516.	4.8	85
46	Frontiers in the Expansion of Bioproducts. BioMed Research International, 2016, 2016, 1-2.	0.9	0
47	Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production. Bioresource Technology, 2016, 211, 398-405.	4.8	84
48	Leguminose green juice as an efficient nutrient for I (+)-lactic acid production. Journal of Biotechnology, 2016, 236, 26-34.	1.9	16
49	Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresource Technology, 2016, 218, 167-173.	4.8	112
50	Utilization of protein-rich residues in biotechnological processes. Applied Microbiology and Biotechnology, 2016, 100, 2133-2140.	1.7	34
51	Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy. Biochemical Engineering Journal, 2016, 116, 3-16.	1.8	84
52	Assessing the economic profitability of fodder legume production for Green Biorefineries – A cost-benefit analysis to evaluate farmers profitability. Journal of Cleaner Production, 2016, 112, 3643-3656.	4.6	19
53	Fatty acid feedstock preparation and lactic acid production as integrated processes in mixed restaurant food and bakery wastes treatment. Food Research International, 2015, 73, 52-61.	2.9	57
54	Microorganisms for the Production of Lactic Acid and Organic Lactates. Microbiology Monographs, 2015, , 225-273.	0.3	20

#	Article	IF	CITATIONS
55	Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste. Bioresource Technology, 2015, 198, 292-299.	4.8	117
56	Utilization of Waste Bread for Lactic Acid Fermentation. , 2014, , .		0
57	Food Waste and Byproduct Valorization through Bio-processing: Opportunities and Challenges. BioResources, 2014, 9, 5774-5777.	0.5	16
58	Agricultural Residues as Feedstocks for Lactic Acid Fermentation. ACS Symposium Series, 2014, , 247-263.	0.5	10
59	Screening of Bacillus coagulans strains in lignin supplemented minimal medium with high throughput turbidity measurements. Biotechnology Reports (Amsterdam, Netherlands), 2014, 4, 60-65.	2.1	7
60	Nutzung von Reststoffen aus der \tilde{A} –Isaatenverarbeitung als Substrat f $\tilde{A}^{1}\!\!/\!4$ r Fermentationsprozesse. Chemie-Ingenieur-Technik, 2014, 86, 1603-1604.	0.4	0
61	Cultivation and Fractionation of Leguminous Biomass for Lactic Acid Production. Chemical and Biochemical Engineering Quarterly, 2014, 28, 375-382.	0.5	24
62	Sugar beet syrups in lactic acid fermentation – Part I. Zuckerindustrie, 2014, , 495-502.	0.1	3
63	Sugar beet syrups in lactic acid fermentation – Part II Saving nutrients by lactic acid fermentation with sugar beet thick juice and raw juice. Zuckerindustrie, 2014, , 683-690.	0.1	5
64	Fermentative Herstellung von <i>L</i> â€Lysinâ€ <i>L</i> âflactat mittels FraktionierungssÃften aus der Grünen Bioraffinerie. Chemie-Ingenieur-Technik, 2010, 82, 1091-1095.	0.4	2
65	Lactic Acid Production by <i>Lactobacillus paracasei</i> 168 in Discontinuous Fermentation Using Lucerne Green Juice as Nutrient Substitute. Chemical Engineering and Technology, 2010, 33, 468-474.	0.9	29
66	Fermentative Production of <i>L</i> â€Lysineâ€ <i>L</i> â€lactate with Fractionated Press Juices from the Green Biorefinery. Chemical Engineering and Technology, 2010, 33, 2102-2105.	0.9	16
67	Biotechnologische Pilotanlage als Bindeglied zwischen F&E und Industrie. Chemie-Ingenieur-Technik, 2009, 81, 1227-1227.	0.4	0
68	Development of a Pilot Plant Facility for the Conversion of Renewables in Biotechnological Processes. Engineering in Life Sciences, 2007, 7, 395-402.	2.0	15
69	Utilization of renewables for lactic acid fermentation. Biotechnology Journal, 2006, 1, 1428-1432.	1.8	32
70	Production of Lactic Acid from Barley: Strain Selection, Phenotypic and Medium Optimization. Engineering in Life Sciences, 2006, 6, 492-500.	2.0	22
71	Microbial Regeneration of the Adsorbents for the Cleaning of Triazine-contaminated Ground Water. Chemical Engineering and Technology, 2000, 23, 26-29.	0.9	1
72	Mikrobielle Regenerierung von Adsorbermaterialien aus der Reinigung triazinhaltiger WÄsser. Chemie-Ingenieur-Technik, 1998, 70, 577-580.	0.4	0

#	Article	IF	CITATIONS
73	New ways of selecting lactic acid bacteria for biotechnological processes. Applied Microbiology and Biotechnology, 1992, 37, 240.	1.7	2
74	Description of the delayed microbial growth by an extended logistic equation. Acta Biotechnologica, 1992, 12, 405-410.	1.0	6
75	Zum Stoffaustausch Gas/Flýssigkeit in Reaktoren mit mehretagigem Rührsystem. Chemie-Ingenieur-Technik, 1991, 63, 168-169.	0.4	2
76	Abhägigkeit der dimensionslosen Mischgeschwindigkeit (n/K) von der Re-Zahl bei einem dreistufigen Rührersystem. Acta Biotechnologica, 1987, 7, 55-59.	1.0	2