List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1296476/publications.pdf Version: 2024-02-01

DETED I DAVNED

#	Article	IF	CITATIONS
1	Optimizing the CO ₂ observing network for constraining sources and sinks. Tellus, Series B: Chemical and Physical Meteorology, 2022, 48, 433.	0.8	41
2	Long-term variability in the global carbon cycle inferred from a high-precision CO ₂ and δ ¹³ C ice-core record. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 233.	0.8	48
3	Reconstructing the recent carbon cycle from atmospheric CO ₂ , δ ¹³ C and O ₂ /N ₂ observations*. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 213.	0.8	187
4	TransCom 3 CO ₂ inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 555.	0.8	105
5	Two decades of ocean CO ₂ sink and variability. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 649.	0.8	20
6	The relationship between peak warming and cumulative CO ₂ emissions, and its use to quantify vulnerabilities in the carbon–climate–human system. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 145.	0.8	58
7	Three-dimensional transport and concentration of SF ₆ A model intercomparison study (TransCom 2). Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 266.	0.8	88
8	Assessing the Impact of Atmospheric CO2 and NO2 Measurements From Space on Estimating City-Scale Fossil Fuel CO2 Emissions in a Data Assimilation System. Frontiers in Remote Sensing, 2022, 3, .	1.3	1
9	Interannual variability in the Australian carbon cycle over 2015–2019, based on assimilation of Orbiting Carbon Observatory-2 (OCO-2) satellite data. Atmospheric Chemistry and Physics, 2022, 22, 8897-8934.	1.9	5
10	A small climate-amplifying effect of climate-carbon cycle feedback. Nature Communications, 2021, 12, 2952.	5.8	5
11	Was Australia a sink or source of CO ₂ in 2015? Data assimilation using OCO-2 satellite measurements. Atmospheric Chemistry and Physics, 2021, 21, 17453-17494.	1.9	8
12	Data assimilation using an ensemble of models: a hierarchical approach. Atmospheric Chemistry and Physics, 2020, 20, 3725-3737.	1.9	3
13	Evaluation of Regional Air Quality Models over Sydney, Australia: Part 2, Comparison of PM2.5 and Ozone. Atmosphere, 2020, 11, 233.	1.0	15
14	A global analysis of urban design types and road transport injury: an image processing study. Lancet Planetary Health, The, 2020, 4, e32-e42.	5.1	32
15	The potential of Orbiting Carbon Observatory-2 data to reduce the uncertainties in CO ₂ surface fluxes over Australia using a variational assimilation scheme. Atmospheric Chemistry and Physics, 2020, 20, 8473-8500.	1.9	11
16	The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 2020, 13, 3571-3605.	1.3	539
17	Greenhouse Gas Concentration and Volcanic Eruptions Controlled the Variability of Terrestrial Carbon Uptake Over the Last Millennium. Journal of Advances in Modeling Earth Systems, 2019, 11, 1715-1734.	1.3	3
18	An atmospheric inversion over the city of Cape Town: sensitivity analyses. Atmospheric Chemistry and Physics, 2019, 19, 7789-7816.	1.9	7

#	Article	IF	CITATIONS
19	A Road Map for Improving the Treatment of Uncertainties in Highâ€Resolution Regional Carbon Flux Inverse Estimates. Geophysical Research Letters, 2019, 46, 13461-13469.	1.5	23
20	Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences, 2019, 16, 3069-3093.	1.3	57
21	Fundamentals of data assimilation applied to biogeochemistry. Atmospheric Chemistry and Physics, 2019, 19, 13911-13932.	1.9	31
22	Combining Measurements of Built-up Area, Nighttime Light, and Travel Time Distance for Detecting Changes in Urban Boundaries: Introducing the BUNTUS Algorithm. Remote Sensing, 2019, 11, 2969.	1.8	17
23	A Clean Air Plan for Sydney: An Overview of the Special Issue on Air Quality in New South Wales. Atmosphere, 2019, 10, 774.	1.0	29
24	Dominant regions and drivers of the variability of the global land carbon sink across timescales. Global Change Biology, 2018, 24, 3954-3968.	4.2	30
25	Estimates of CO ₂ fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling. Atmospheric Chemistry and Physics, 2018, 18, 4765-4801.	1.9	22
26	Hot Summers: Effect of Extreme Temperatures on Ozone in Sydney, Australia. Atmosphere, 2018, 9, 466.	1.0	25
27	Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content. Geoscientific Model Development, 2018, 11, 1517-1536.	1.3	42
28	The Potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to Provide Multi-scale Constraints on the Carbon Cycle in the Americas. Frontiers in Environmental Science, 2018, 6, .	1.5	60
29	Comparison of the genetic algorithm and incremental optimisation routines for a Bayesian inverse modelling based network design. Inverse Problems, 2018, 34, 055006.	1.0	6
30	Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 2017, 10, 2057-2116.	1.3	350
31	Causal knowledge promotes behavioral self-regulation: An example using climate change dynamics. PLoS ONE, 2017, 12, e0184480.	1.1	6
32	Reviews and syntheses: guiding the evolution of the observing system for the carbon cycle through quantitative network design. Biogeosciences, 2017, 14, 4755-4766.	1.3	9
33	Potential of a geostationary geoCARB mission to estimate surface emissions of CO ₂ , CH ₄ and CO in a polluted urban environment: case study Shanghai. Atmospheric Measurement Techniques, 2016, 9, 4654	1.2	38
34	A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle. Geoscientific Model Development, 2016, 9, 3321-3346.	1.3	67
35	How do carbon cycle uncertainties affect <scp>IPCC</scp> temperature projections?. Atmospheric Science Letters, 2016, 17, 236-242.	0.8	6
36	Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake. Nature Geoscience, 2016, 9, 691-694.	5.4	40

#	Article	lF	CITATIONS
37	Can we detect regional methane anomalies? A comparison between three observing systems. Atmospheric Chemistry and Physics, 2016, 16, 9089-9108. Atmospheric abundance and global emissions of perfluorocarbons	1.9	7
38	CF ₄ , C ₂ F ₆ and C ₃ F ₈ since 1800 inferred from ice core, firn, air archive and in situ measurements. Atmospheric Chemistry and Physics,	1.9	35
39	2016, 16, 11733, 11754 Sensitivity of simulated CO ₂ concentration to sub-annual variations in fossil fuel CO ₂ emissions. Atmospheric Chemistry and Physics, 2016, 16, 1907-1918.	1.9	9
40	Linear and nonlinear effects of dominant drivers on the trends in global and regional land carbon uptake: 1959 to 2013. Geophysical Research Letters, 2016, 43, 1607-1614.	1.5	18
41	Optimising the deployment of renewable resources for the Australian NEM (National Electricity) Tj ETQq1 1 0.7	′84314 rgB 4.5	T /Qverlock 1
42	Multi-species chemical data assimilation with the Danish Eulerian hemispheric model: system description and verification. Journal of Atmospheric Chemistry, 2016, 73, 261-302.	1.4	5
43	Designing optimal greenhouse gas monitoring networksÂforÂAustralia. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 1-15.	0.6	11
44	Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a processâ€oriented biosphere model. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1839-1857.	1.3	34
45	Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case. Atmospheric Chemistry and Physics, 2015, 15, 2051-2069.	1.9	25
46	Investigating the usefulness of satellite-derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system. Biogeosciences, 2015, 12, 4067-4084.	1.3	80
47	Recent changes in the global and regional carbon cycle: analysis of first-order diagnostics. Biogeosciences, 2015, 12, 835-844.	1.3	8
48	Impacts of atmospheric state uncertainty on O ₂ measurement requirements for the ASCENDS mission. Atmospheric Measurement Techniques, 2015, 8, 2685-2697.	1.2	5
49	The impact of filtering selfâ€organizing maps: a case study with Australian pressure and rainfall. International Journal of Climatology, 2015, 35, 624-633.	1.5	8
50	Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 2014, 11, 3547-3602.	1.3	189
51	Constraining regional greenhouse gas emissions using geostationary concentration measurements: a theoretical study. Atmospheric Measurement Techniques, 2014, 7, 3285-3293.	1.2	46
52	Greenhouse gas network design using backward Lagrangian particle dispersion modelling â^ Part 1: Methodology and Australian test case. Atmospheric Chemistry and Physics, 2014, 14, 9363-9378.	1.9	22
53	Sensitivity of simulated CO ₂ concentration to regridding of global fossil fuel CO ₂ emissions. Geoscientific Model Development, 2014, 7, 2867-2874.	1.3	9
54	A multiyear, global gridded fossil fuel CO ₂ emission data product: Evaluation and analysis of results. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,213.	1.2	121

#	Article	IF	CITATIONS
55	Progress in development of Tropospheric Infrared Mapping Spectrometers (TIMS): GeoCARB Greenhouse Gas (GHG) application. Proceedings of SPIE, 2013, , .	0.8	11
56	The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and challenges. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1414-1426.	1.3	86
57	Uncertainty in temperature projections reduced using carbon cycle and climate observations. Nature Climate Change, 2013, 3, 725-729.	8.1	52
58	On the variation of regional CO ₂ exchange over temperate and boreal North America. Global Biogeochemical Cycles, 2013, 27, 991-1000.	1.9	10
59	Estimating bacteria emissions from inversion of atmospheric transport: sensitivity to modelled particle characteristics. Atmospheric Chemistry and Physics, 2013, 13, 5473-5488.	1.9	19
60	Quantifying the constraint of biospheric process parameters by CO ₂ concentration and flux measurement networks through a carbon cycle data assimilation system. Atmospheric Chemistry and Physics, 2013, 13, 10555-10572.	1.9	16
61	How well do different tracers constrain the firn diffusivity profile?. Atmospheric Chemistry and Physics, 2013, 13, 1485-1510.	1.9	25
62	Global atmospheric carbon budget: results from an ensemble of atmospheric CO ₂ inversions. Biogeosciences, 2013, 10, 6699-6720.	1.3	356
63	Observing the continental-scale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design. Atmospheric Chemistry and Physics, 2012, 12, 7867-7879.	1.9	31
64	Correlations among leaf traits provide a significant constraint on the estimate of global gross primary production. Geophysical Research Letters, 2012, 39, .	1.5	54
65	Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbonâ€cycle data assimilation system. Global Biogeochemical Cycles, 2012, 26, .	1.9	59
66	Carbon Cycle Uncertainty in REgional Carbon Cycle Assessment and Processes (RECCAP). Biogeosciences, 2012, 9, 2889-2904.	1.3	30
67	A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences, 2012, 9, 1845-1871.	1.3	271
68	A three-dimensional synthesis inversion of the molecular hydrogen cycle: Sources and sinks budget and implications for the soil uptake. Journal of Geophysical Research, 2011, 116, .	3.3	19
69	Atmospheric CO ₂ inversion validation using vertical profile measurements: Analysis of four independent inversion models. Journal of Geophysical Research, 2011, 116, .	3.3	41
70	Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods. Journal of Geophysical Research, 2011, 116, .	3.3	12
71	Optimal representation of source-sink fluxes for mesoscale carbon dioxide inversion with synthetic data. Journal of Geophysical Research, 2011, 116, .	3.3	56
72	A European summertime CO2biogenic flux inversion at mesoscale from continuous in situ mixing ratio measurements. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	57

#	Article	IF	CITATIONS
73	Constraining predictions of the carbon cycle using data. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1955-1966.	1.6	22
74	What can we learn from European continuous atmospheric CO ₂ measurements to quantify regional fluxes – Part 2: Sensitivity of flux accuracy to inverse setup. Atmospheric Chemistry and Physics, 2010, 10, 3119-3129.	1.9	43
75	Evaluation of various observing systems for the global monitoring of CO ₂ surface fluxes. Atmospheric Chemistry and Physics, 2010, 10, 10503-10520.	1.9	112
76	What can we learn from European continuous atmospheric CO ₂ measurements to quantify regional fluxes – Part 1: Potential of the 2001 network. Atmospheric Chemistry and Physics, 2010, 10, 3107-3117.	1.9	40
77	The current state of carbon-cycle data assimilation. Current Opinion in Environmental Sustainability, 2010, 2, 289-296.	3.1	34
78	Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions. Energy Policy, 2010, 38, 4756-4764.	4.2	126
79	A new global gridded data set of CO ₂ emissions from fossil fuel combustion: Methodology and evaluation. Journal of Geophysical Research, 2010, 115, .	3.3	144
80	On the impact of transport model errors for the estimation of CO ₂ surface fluxes from GOSAT observations. Geophysical Research Letters, 2010, 37, .	1.5	72
81	Structure of the transport uncertainty in mesoscale inversions of CO ₂ sources and sinks using ensemble model simulations. Biogeosciences, 2009, 6, 1089-1102.	1.3	82
82	Bridging the gap between atmospheric concentrations and local ecosystem measurements. Geophysical Research Letters, 2009, 36, .	1.5	46
83	On the use of ¹⁴ CO ₂ as a tracer for fossil fuel CO ₂ : Quantifying uncertainties using an atmospheric transport model. Journal of Geophysical Research, 2009, 114, .	3.3	107
84	AIRSâ€based versus flaskâ€based estimation of carbon surface fluxes. Journal of Geophysical Research, 2009, 114, .	3.3	52
85	Using the Kalman filter for parameter estimation in biogeochemical models. Environmetrics, 2008, 19, 849-870.	0.6	30
86	Interannual variability of the global carbon cycle (1992–2005) inferred by inversion of atmospheric CO ₂ and <i>δ</i> ¹³ CO ₂ measurements. Global Biogeochemical Cycles, 2008, 22, .	1.9	108
87	Interannual variations in continentalâ€scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO ₂ inversions for the period 1980 to 2005. Global Biogeochemical Cycles, 2008, 22, .	1.9	96
88	TOWARD A MONITORING AND FORECASTING SYSTEM FOR ATMOSPHERIC COMPOSITION. Bulletin of the American Meteorological Society, 2008, 89, 1147-1164.	1.7	253
89	Mesoscale inversion: first results from the CERES campaign with synthetic data. Atmospheric Chemistry and Physics, 2008, 8, 3459-3471.	1.9	91
90	Assimilation and Network Design. Ecological Studies, 2008, , 33-52.	0.4	12

#	Article	IF	CITATIONS
91	Contribution of the Orbiting Carbon Observatory to the estimation of CO2sources and sinks: Theoretical study in a variational data assimilation framework. Journal of Geophysical Research, 2007, 112, .	3.3	301
92	Carbon flux bias estimation employing Maximum Likelihood Ensemble Filter (MLEF). Journal of Geophysical Research, 2007, 112, .	3.3	78
93	OptIC project: An intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models. Journal of Geophysical Research, 2007, 112, .	3.3	82
94	Sensitivity of inverse estimation of annual mean CO2sources and sinks to ocean-only sites versus all-sites observational networks. Geophysical Research Letters, 2006, 33, .	1.5	40
95	Estimating High Latitude Carbon Fluxes With Inversions Of Atmospheric CO2. Mitigation and Adaptation Strategies for Global Change, 2006, 11, 769-782.	1.0	12
96	Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 2006, 19, 3337-3353.	1.2	2,647
97	Daily CO ₂ flux estimates over Europe from continuous atmospheric measurements: 1, inverse methodology. Atmospheric Chemistry and Physics, 2005, 5, 3173-3186.	1.9	139
98	Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. Global Change Biology, 2005, 11, 378-397.	4.2	283
99	Multiple constraints on regional CO2flux variations over land and oceans. Global Biogeochemical Cycles, 2005, 19, .	1.9	154
100	Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	261
101	Simultaneous mass balance inverse modeling of methane and carbon monoxide. Journal of Geophysical Research, 2005, 110, .	3.3	25
102	The Orbiting Carbon Observatory (OCO) mission. Advances in Space Research, 2004, 34, 700-709.	1.2	596
103	Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	312
104	Inversion of diurnally varying synthetic CO2: Network optimization for an Australian test case. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	25
105	Mass balance inverse modelling of methane in the 1990s using a Chemistry Transport Model. Atmospheric Chemistry and Physics, 2004, 4, 2561-2580.	1.9	16
106	Data and modelling requirements for CO2 inversions using high-frequency data. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 512-521.	0.8	27
107	Two decades of ocean CO2 sink and variability. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 649-656.	0.8	92
108	TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 555-579.	0.8	235

#	Article	IF	CITATIONS
109	Data and modelling requirements for CO2 inversions using high-frequency data. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 512-521.	0.8	5
110	An Example of an Automatic Differentiation-Based Modelling System. Lecture Notes in Computer Science, 2003, , 95-104.	1.0	19
111	Global observations of the carbon budget, 2, CO2column from differential absorption of reflected sunlight in the 1.61 μm band of CO2. Journal of Geophysical Research, 2002, 107, ACH 6-1.	3.3	90
112	Global observations of the carbon budget 3. Initial assessment of the impact of satellite orbit, scan geometry, and cloud on measuring CO2 from space. Journal of Geophysical Research, 2002, 107, ACH 2-1-ACH 2-7.	3.3	39
113	Kalman filter analysis of ice core data 1. Method development and testing the statistics. Journal of Geophysical Research, 2002, 107, ACH 4-1.	3.3	10
114	Kalman filter analysis of ice core data 2. Double deconvolution of CO2and δ13C measurements. Journal of Geophysical Research, 2002, 107, ACH 5-1.	3.3	33
115	Reconstructing atmospheric histories from measurements of air composition in firn. Journal of Geophysical Research, 2002, 107, ACH 15-1.	3.3	54
116	Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle. Global Biogeochemical Cycles, 2002, 16, 14-1-14-16.	1.9	111
117	Using high temporal frequency data for CO ₂ inversions. Global Biogeochemical Cycles, 2002, 16, 1-1.	1.9	98
118	Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 2002, 415, 626-630.	13.7	1,157
119	Title is missing!. Climatic Change, 2002, 55, 273-285.	1.7	28
120	The utility of remotely sensed CO2concentration data in surface source inversions. Geophysical Research Letters, 2001, 28, 175-178.	1.5	444
121	On aggregation errors in atmospheric transport inversions. Journal of Geophysical Research, 2001, 106, 4703-4715.	3.3	235
122	Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414, 169-172.	13.7	1,162
123	Atmospheric Perspectives on the Ocean Carbon Cycle. , 2001, , 285-294.		4
124	Estimation theory and atmospheric data assimilation. Geophysical Monograph Series, 2000, , 49-65.	0.1	6
125	Tracer assimilation. Geophysical Monograph Series, 2000, , 67-79.	0.1	5
126	Tangent linear and adjoint biogeochemical models. Geophysical Monograph Series, 2000, , 33-48.	0.1	26

#	Article	IF	CITATIONS
127	Differences of CO2 flux estimates based on a "Time-Independent―versus a "Time-[In]Dependent― inversion method. Geophysical Monograph Series, 2000, , 295-309.	0.1	14
128	Green's function methods of tracer inversion. Geophysical Monograph Series, 2000, , 19-31.	0.1	26
129	Three-dimensional transport and concentration of SF6. A model intercomparison study (TransCom 2). Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 266-297.	0.8	101
130	Reconstructing the recent carbon cycle from atmospheric CO2, delta13C and O2/N2 observations*. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 213-232.	0.8	245
131	Long-term variability in the global carbon cycle inferred from a high-precision CO2 and delta13C ice-core record. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 233-248.	0.8	42
132	Impacts of seasonal covariance on CO2inversions. Global Biogeochemical Cycles, 1999, 13, 845-856.	1.9	19
133	The relationship between tropical CO2fluxes and the El Niño-Southern Oscillation. Geophysical Research Letters, 1999, 26, 493-496.	1.5	83
134	Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2inversions. Global Biogeochemical Cycles, 1996, 10, 783-796.	1.9	155
135	Optimizing the CO2 observing network for constraining sources and sinks. Tellus, Series B: Chemical and Physical Meteorology, 1996, 48, 433-444.	0.8	46
136	Local and remote response to zonally uniform sea-surface temperature in a July general circulation model. International Journal of Climatology, 1989, 9, 111-131.	1.5	12
137	Assimilation of atmospheric CO2 observations from space can support national CO2 emission inventories. Environmental Research Letters, 0, , .	2.2	5