CÉr Medina MartÃnez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1296323/publications.pdf

Version: 2024-02-01

72 papers

3,071 citations

30 h-index 54 g-index

74 all docs

74 docs citations

times ranked

74

1902 citing authors

#	Article	IF	Citations
1	Influence of mixed recycled aggregate on the physical – mechanical properties of recycled concrete. Journal of Cleaner Production, 2014, 68, 216-225.	4.6	233
2	Properties of interfacial transition zones (ITZs) in concrete containing recycled mixed aggregate. Cement and Concrete Composites, 2017, 81, 25-34.	4.6	199
3	Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cement and Concrete Composites, 2012, 34, 48-54.	4.6	177
4	Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Construction and Building Materials, 2012, 31, 112-118.	3.2	171
5	Freeze-thaw durability of recycled concrete containing ceramic aggregate. Journal of Cleaner Production, 2013, 40, 151-160.	4.6	137
6	Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	123
7	Effect of activated coal mining wastes on the properties of blended cement. Cement and Concrete Composites, 2012, 34, 678-683.	4.6	117
8	Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): Scientific and technical considerations. Journal of Cleaner Production, 2017, 148, 467-476.	4.6	98
9	Durability of recycled concrete made with recycled ceramic sanitary ware aggregate. Inter-indicator relationships. Construction and Building Materials, 2016, 105, 480-486.	3.2	95
10	Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Construction and Building Materials, 2013, 40, 822-831.	3.2	91
11	Assessment of Construction and Demolition Waste plant management in Spain: in pursuit of sustainability and eco-efficiency. Journal of Cleaner Production, 2015, 90, 16-24.	4.6	85
12	Effect of the constituents (asphalt, clay materials, floating particles and fines) of construction and demolition waste on the properties of recycled concretes. Construction and Building Materials, 2015, 79, 22-33.	3.2	84
13	Properties of recycled ceramic aggregate concretes: Water resistance. Cement and Concrete Composites, 2013, 40, 21-29.	4.6	73
14	Mechanical behaviour of structural concrete with ground recycled concrete cement and mixed recycled aggregate. Journal of Cleaner Production, 2020, 275, 122913.	4.6	69
15	Scientific Aspects of Kaolinite Based Coal Mining Wastes in Pozzolan/ <scp><scp>Ca(OH)₂</scp> System. Journal of the American Ceramic Society, 2012, 95, 386-391.</scp>	1.9	65
16	Influence of curing conditions on recycled aggregate concrete. Construction and Building Materials, 2018, 172, 618-625.	3.2	60
17	Gas permeability in concrete containing recycled ceramic sanitary ware aggregate. Construction and Building Materials, 2012, 37, 597-605.	3.2	59
18	Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content. Construction and Building Materials, 2020, 234, 117336.	3.2	59

#	Article	IF	Citations
19	Characterization of Ceramicâ€Based Construction and Demolition Waste: Use as Pozzolan in Cements. Journal of the American Ceramic Society, 2016, 99, 4121-4127.	1.9	52
20	Statistically significant effects of mixed recycled aggregate on the physical-mechanical properties of structural concretes. Construction and Building Materials, 2018, 185, 93-101.	3.2	47
21	Water transport and shrinkage in concrete made with ground recycled concrete-additioned cement and mixed recycled aggregate. Cement and Concrete Composites, 2021, 118, 103957.	4.6	45
22	Use of recycled coarse and fine aggregates in structural eco-concretes. Physical and mechanical properties and CO2 emissions. Construction and Building Materials, 2021, 285, 122926.	3.2	44
23	Mineralogical study of granite waste in a pozzolan/Ca(OH)2 system: Influence of the activation process. Applied Clay Science, 2017, 135, 362-371.	2.6	40
24	Inclusion of construction and demolition waste as a coarse aggregate and a cement addition in structural concrete design. Archives of Civil and Mechanical Engineering, 2019, 19, 1338-1352.	1.9	40
25	Durability of new recycled granite quarry dust-bearing cements. Construction and Building Materials, 2018, 187, 414-425.	3.2	38
26	Effect of Temperature on <scp><scp>C</scp></scp> ₃ <scp><scp>S</scp></scp> and <scp><scp>C</scp></scp> ₃ <scp>><scp>+ Nanosilica Hydration and <scp><scp>C</scp></scp></scp></scp> <	1.9	37
27	Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Construction and Building Materials, 2016, 127, 950-958.	3.2	37
28	Design and characterisation of ternary cements containing rice husk ash and fly ash. Construction and Building Materials, 2018, 187, 65-76.	3.2	37
29	Fired clay-based construction and demolition waste as pozzolanic addition in cements. Design of new eco-efficient cements. Journal of Cleaner Production, 2020, 265, 121610.	4.6	34
30	INFLUENCE OF INTERFACIAL TRANSITION ZONE ON ENGINEERING PROPERTIES OF THE CONCRETE MANUFACTURED WITH RECYCLED CERAMIC AGGREGATE. Journal of Civil Engineering and Management, 2014, 21, 83-93.	1.9	32
31	Water transport mechanisms in concretes bearing mixed recycled aggregates. Cement and Concrete Composites, 2020, 107, 103486.	4.6	31
32	Leaching in concretes containing recycled ceramic aggregate from the sanitary ware industry. Journal of Cleaner Production, 2014, 66, 85-91.	4.6	30
33	Mineralogy and Microstructure of Hydrated Phases During the Pozzolanic Reaction in the Sanitary Ware Waste/Ca(<scp>OH</scp>) ₂ System. Journal of the American Ceramic Society, 2016, 99, 340-348.	1.9	29
34	Durability of new blended cements additioned with recycled biomass bottom ASH from electric power plants. Construction and Building Materials, 2019, 225, 429-440.	3.2	28
35	Characterisation and valorisation of biomass waste as a possible addition in eco-cement design. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	27
36	Reuse of coal mining waste to lengthen the service life of cementitious matrices. Cement and Concrete Composites, 2019, 99, 72-79.	4.6	26

#	Article	IF	CITATIONS
37	Caracterizaci \tilde{A}^3 n de los hormigones realizados con \tilde{A}_i ridos reciclados procedentes de la industria de cer \tilde{A}_i mica sanitaria. Materiales De Construccion, 2011, 61, 533-546.	0.2	26
38	Design and properties of eco-friendly binary mortars containing ash from biomass-fuelled power plants. Cement and Concrete Composites, 2019, 104, 103372.	4.6	25
39	Evaluation of chloride transport in blended cement mortars containing coal mining waste. Construction and Building Materials, 2018, 190, 200-210.	3.2	24
40	Use of ceramic industry milling and glazing waste as an active addition in cement. Journal of the American Ceramic Society, 2018, 101, 2028-2037.	1.9	23
41	Scientific and technical aspects of blended cement matrices containing activated slate wastes. Cement and Concrete Composites, 2014, 48, 19-25.	4.6	22
42	New additions for eco-efficient cement design. Impact on calorimetric behaviour and comparison of test methods. Materials and Structures/Materiaux Et Constructions, 2016, 49, 4595-4607.	1.3	22
43	Water transport in binary eco-cements containing coal mining waste. Cement and Concrete Composites, 2019, 104, 103373.	4.6	22
44	Thermal Performance of Concrete with Recycled Concrete Powder as Partial Cement Replacement and Recycled CDW Aggregate. Applied Sciences (Switzerland), 2020, 10, 4540.	1.3	22
45	Freeze-thaw resistance of concrete containing mixed aggregate and construction and demolition waste-additioned cement in water and de-icing salts. Construction and Building Materials, 2020, 259, 119772.	3.2	19
46	Use of biomass-fired power plant bottom ash as an addition in new blended cements: Effect on the structure of the C-S-H gel formed during hydration. Construction and Building Materials, 2019, 228, 117081.	3.2	16
47	The Design and Development of Recycled Concretes in a Circular Economy Using Mixed Construction and Demolition Waste. Materials, 2021, 14, 4762.	1.3	14
48	Durability of concrete bearing polymer-treated mixed recycled aggregate. Construction and Building Materials, 2022, 315, 125781.	3.2	14
49	Use of clay-based construction and demolition waste as additions in the design of new low and very low heat of hydration cements. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	13
50	Construction and demolition waste applications and maximum daily output in Spanish recycling plants. Waste Management and Research, 2020, 38, 423-432.	2.2	13
51	Properties of concretes bearing mixed recycled aggregate with polymer-modified surfaces. Journal of Building Engineering, 2021, 38, 102211.	1.6	13
52	Activation temperature-mediated mineralogical transformations in slate quarry sludge: Pozzolanic properties. Construction and Building Materials, 2018, 187, 819-829.	3.2	12
53	Estado actual de la gestión de residuos de construcción y demolición: limitaciones. Informes De La Construccion, 2011, 63, 89-95.	0.1	12
54	Exploring sulphate resistance of coal mining waste blended cements through experiments and thermodynamic modelling. Cement and Concrete Composites, 2021, 121, 104086.	4.6	11

#	Article	IF	CITATIONS
55	Assessment of the Permeability to Aggressive Agents of Concrete with Recycled Cement and Mixed Recycled Aggregate. Applied Sciences (Switzerland), 2021, 11, 3856.	1.3	10
56	The Influence of Fly Ash on the Mechanical Performance of Cementitious Materials Produced with Recycled Cement. Applied Sciences (Switzerland), 2022, 12, 2257.	1.3	10
57	Report of RILEM TC 281-CCC: outcomes of a round robin on the resistance to accelerated carbonation of Portland, Portland-fly ash and blast-furnace blended cements. Materials and Structures/Materiaux Et Constructions, 2022, 55, 99.	1.3	10
58	Durability and chromatic behavior in cement pastes containing ceramic industry milling and glazing byâ€products. Journal of the American Ceramic Society, 2019, 102, 1971-1981.	1.9	9
59	Energy performance and calorimetric behaviour of cements bearing granite sludge. Powder Technology, 2019, 356, 517-527.	2.1	9
60	Industrial Low-Clinker Precast Elements Using Recycled Aggregates. Applied Sciences (Switzerland), 2020, 10, 6655.	1.3	9
61	Sulfate Resistance in Cements Bearing Ornamental Granite Industry Sludge. Materials, 2020, 13, 4081.	1.3	6
62	Durability of eco-efficient binary cement mortars based on ichu ash: Effect on carbonation and chloride resistance. Cement and Concrete Composites, 2022, 131, 104608.	4.6	5
63	Quantitative Comparison of Binary Mix of Agro-Industrial Pozzolanic Additions for Elaborating Ternary Cements: Kinetic Parameters. Materials, 2021, 14, 2944.	1.3	4
64	Resonance Fatigue Behaviour of Concretes with Recycled Cement and Aggregate. Applied Sciences (Switzerland), 2021, 11, 5045.	1.3	4
65	Meso-structural modelling in recycled aggregate concrete. , 2019, , 453-476.		3
66	Effect of Granite Waste on Binary Cement Hydration and Paste Performance: Statistical Analysis. ACI Materials Journal, 2019, 116, .	0.3	3
67	Sulfate Resistance in Cements Bearing Bottom Ash from Biomass-Fired Electric Power Plants. Applied Sciences (Switzerland), 2020, 10, 8982.	1.3	2
68	Fillers and additions from industrial waste for recycled aggregate concrete., 2022,, 105-143.		2
69	Industrial waste from biomass-fired electric power plants as alternative pozzolanic material., 2021,, 243-282.		1
70	Durability of Ternary Cements Based on New Supplementary Cementitious Materials from Industrial Waste. Applied Sciences (Switzerland), 2021, 11, 5977.	1.3	1
71	Modeling the interfacial transition zone between recycled aggregates and industrial waste in cementitious matrix., 2021,, 3-27.		1
72	Reparaci \tilde{A}^3 n de revocos de morteros. Nuevos documentos normativos de AENOR. Informes De La Construccion, 2012, 64, 141-151.	0.1	0