Gang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1296030/publications.pdf Version: 2024-02-01

GANC YANC

#	Article	IF	CITATIONS
1	Surface modification and in situ carbon intercalation of two-dimensional niobium carbide as promising electrode materials for potassium-ion batteries. Chemical Engineering Journal, 2022, 431, 133838.	12.7	19
2	Enhanced Zn2+ transfer dynamics via a 3D bird nest-like VO2/MXene heterojunction for ultrahigh-rate aqueous zinc-ion batteries. Journal of Power Sources, 2022, 520, 230872.	7.8	28
3	Designing S-scheme Au/g-C3N4/BiO1.2I0.6 plasmonic heterojunction for efficient visible-light photocatalysis. Separation and Purification Technology, 2022, 287, 120531.	7.9	38
4	Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight. Carbon, 2022, 193, 272-284.	10.3	51
5	Integration of plasmonic effect and S-scheme heterojunction into gold decorated carbon nitride/cuprous oxide catalyst for photocatalysis. Journal of Cleaner Production, 2022, 360, 131948.	9.3	29
6	Improved rate and cyclic performance of potassium-doped nickel-rich ternary cathode material for lithium-ion batteries. Journal of Materials Science, 2021, 56, 2399-2411.	3.7	14
7	Single-side functionalized graphene as promising cathode catalysts in nonaqueous lithium–oxygen batteries. Nanoscale, 2021, 13, 12727-12737.	5.6	4
8	A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalent chromium and oxidation of oxytetracycline hydrochloride. Chemical Engineering Journal, 2021, 409, 128185.	12.7	74
9	Mechanochemical process on layered compounds MoO3 and graphite to construct heterostructure composites with efficient lithium storage performance. Materials Chemistry and Physics, 2021, 267, 124646.	4.0	8
10	Super-hydrophilic microporous biochar from biowaste for supercapacitor application. Applied Surface Science, 2021, 561, 150076.	6.1	29
11	The effect of Ni oxidation state on the crystal structure and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material for highly reversible lithium storage. Journal of Alloys and Compounds, 2021, 882, 160642.	5.5	21
12	Preparation and characterization of the Li _{1.12} K _{0.05} Mn _{0.57} Ni _{0.24} Nb _{0.02} O _{2cathode material with highly improved rate cycling performance for lithium ion batteries. Nanoscale, 2021, 14, 65-75.}	^{اله} کي.6	5
13	Heterostructural composite of fewâ€layered MoS ₂ /hexagonal MoO ₂ particles/graphene as anode material for highly reversible lithium/sodium storage. International Journal of Energy Research, 2020, 44, 518-527.	4.5	29
14	Preparation of hierarchical hexagonal nanoplates NiO composite with microcrystalline graphite for highly reversible lithium storage. Journal of Alloys and Compounds, 2020, 815, 152333.	5.5	9
15	Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior Highâ€Rate and Lowâ€Temperature Zincâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1907684.	14.9	259
16	Molten salt-assisted regeneration and characterization of submicron-sized LiNi0.5Co0.2Mn0.3O2 crystals from spent lithium ion batteries. Journal of Alloys and Compounds, 2020, 848, 156591.	5.5	24
17	Amorphous Li2ZrO3 nanoparticles coating Li[Li0·17Mn0·58Ni0.25]O2 cathode material for enhanced rate and cyclic performance in lithium ion storage. Materials Chemistry and Physics, 2020, 255, 123593.	4.0	11
18	An organic cathode with tailored working potential for aqueous Zn-ion batteries. Chemical Communications, 2020, 56, 11859-11862.	4.1	54

#	Article	IF	CITATIONS
19	Flux preparation of <scp> LiNi ₀ </scp> _. <scp> ₆ Co ₀ </scp> _. <scp> ₂ Mn ₀ </scp> _. <scp> ₂ O </scp> _. <scp> ₂ O </scp> ₂	4.5	9
20	A review on structuralized current collectors for high-performance lithium-ion battery anodes. Applied Energy, 2020, 276, 115464.	10.1	47
21	Carbon nanofiber activated by molybdenum disulfide as an effective binderâ€free composite anode for highly reversible lithium storage. International Journal of Energy Research, 2020, 44, 4605-4615.	4.5	11
22	Freeze-drying preparation of MnOx/graphene nanocomposite as anode material for highly reversible lithium storage. Journal of Materials Science, 2020, 55, 5545-5553.	3.7	12
23	Preparation and characterization of Li1.167-K Mn0.583Ni0·25O2 (x=0, 0.025, 0.05 and 0.075) as cathode materials for highly reversible lithium-ion batteries. Electrochimica Acta, 2020, 341, 136014.	5.2	7
24	Characterization of Fe ₂ O ₃ /Graphene Composites Synthesized using an Inâ€Situ Reaction of Inexpensive Graphite Oxide and FeCl ₃ . ChemElectroChem, 2020, 7, 5013-5020.	3.4	5
25	Enhanced electrochemical performance of α-Fe2O3 grains grafted onto TiO2-Carbon nanofibers via a Vapor-Solid reaction as anode materials for Li-Ion batteries. Applied Surface Science, 2019, 463, 322-330.	6.1	11
26	Synthesis and structural properties of xLi2MnO3â‹(1-x)LiNi0.5Mn0.5O2 single crystals towards enhancing reversibility for lithium-ion battery/pouch cells. Journal of Alloys and Compounds, 2019, 770, 490-499.	5.5	10
27	Preparation and characterization of spinel-layered mixed structural 0.2LiNi0.5Mn1.5O4·0.8Li[Li0.2Ni0.2Mn0.6]O2 as cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 801, 254-261.	5.5	9
28	Highly active free-standing and flexible MoS2/rGO sandwich-structured films for supercapacitor applications. Solid State Communications, 2019, 297, 45-49.	1.9	37
29	A novel CoO hierarchical morphologies on carbon nanofiber for improved reversibility as binder-free anodes in lithium/sodium ion batteries. Journal of Alloys and Compounds, 2019, 794, 385-395.	5.5	27
30	Assembly of AgI nanoparticles and ultrathin g-C3N4 nanosheets codecorated Bi2WO6 direct dual Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced photocatalytic performance. Chemical Engineering Journal, 2019, 373, 1144-1157.	12.7	199
31	Synthesis of Li1.147K0.026Mn0.582Ni0.25O2 cathode material with high rate cyclic performance and the application to lithium-ion full cells. Journal of Alloys and Compounds, 2019, 787, 700-710.	5.5	10
32	The composite of carbon nanotube connecting SnO2/reduced graphene clusters as highly reversible anode material for lithium-/sodium-ion batteries and full cell. Composites Part B: Engineering, 2019, 169, 109-117.	12.0	38
33	Synthesis and characterization of nanoflaky maghemite (γ-Fe2O3) as a versatile anode for Li-ion batteries. Ceramics International, 2019, 45, 131-136.	4.8	14
34	Complementary stabilization by core/sheath carbon nanofibers/spongy carbon on submicron tin oxide particles as anode for lithium-ion batteries. Journal of Power Sources, 2019, 413, 42-49.	7.8	25
35	Synthesis of micron-sized LiNi0.5Mn1.5O4 single crystals through in situ microemulsion/coprecipitation and characterization of their electrochemical capabilities. Powder Technology, 2019, 343, 445-453.	4.2	31
36	Directly scalable preparation of sandwiched MoS2/graphene nanocomposites via ball-milling with excellent electrochemical energy storage performance. Electrochimica Acta, 2019, 299, 143-151.	5.2	55

#	Article	IF	CITATIONS
37	Carbon Nanorodâ^'MoS ₂ Coreâ^'Sheath Heterostructure and Its Electrochemical Properties over Various Electrochemical Windows. ChemElectroChem, 2018, 5, 1288-1296.	3.4	7
38	Synergetic interface between NiO/Ni3S2 nanosheets and carbon nanofiber as binder-free anode for highly reversible lithium storage. Applied Surface Science, 2018, 441, 232-238.	6.1	22
39	The effect of passivation film in preparation 3D structural carbon paper/tin oxide@carbon as freestanding anode for lithium-ion batteries. Applied Surface Science, 2018, 435, 1307-1313.	6.1	15
40	Synthesis of wolframite FeNbO4 nanorods as a novel anode material for improved lithium storage capability. Journal of Alloys and Compounds, 2018, 740, 7-15.	5.5	18
41	Synthesis of MnNb2O6 with hierarchical structure as a novel electrode material for high-performance supercapacitors. Journal of Alloys and Compounds, 2018, 750, 428-435.	5.5	27
42	CoCO3 micrometer particles stabilized by carbon nanofibers networks as composite electrode for enhanced rate and cyclic performance of lithium-ion batteries. Electrochimica Acta, 2018, 270, 22-29.	5.2	21
43	Effect of ball milling conditions on microstructure and lithium storage properties of LiNi0.5Mn1.5O4 as cathode for lithium-ion batteries. Materials Research Bulletin, 2018, 99, 436-443.	5.2	10
44	Carbon coated SnO 2 particles stabilized in the elastic network of carbon nanofibers and its improved electrochemical properties. Materials Chemistry and Physics, 2018, 215, 285-292.	4.0	9
45	Synthesis of sandwich-like Co(CO3)0.5(OH)/graphene composite through confined growth and self-assemblies for highly reversible lithium storage. Journal of Alloys and Compounds, 2018, 764, 709-717.	5.5	15
46	Rapid microwave-hydrothermal preparation of few-layer MoS2/C nanocomposite as anode for highly reversible lithium storage properties. Journal of Materials Science, 2018, 53, 14548-14558.	3.7	27
47	Synthesis of heterostructure Sn SnO2 submicron particles supported by carbon fibers as binder-free anodes for highly reversible lithium storage. Journal of Alloys and Compounds, 2018, 750, 220-227.	5.5	8
48	Freezeâ€Dryingâ€Assisted Synthesis of Porous SnO ₂ /rGO Xerogels as Anode Materials for Highly Reversible Lithium/Sodium Storage. ChemElectroChem, 2018, 5, 2387-2394.	3.4	17
49	Efficient construction of a CoCO3/graphene composite anode material for lithium-ion batteries by stirring solvothermal reaction. Ceramics International, 2018, 44, 3718-3725.	4.8	21
50	Preparation and performance characterization of AlF 3 as interface stabilizer coated Li 1.24 Ni 0.12 Co 0.12 Mn 0.56 O 2 cathode for lithium-ion batteries. Applied Surface Science, 2017, 406, 21-29.	6.1	26
51	Sheath/Core Hybrid FeCO ₃ /Carbon Nanofibers as Anode Materials for Superior Cycling Stability and Rate Performance. ChemElectroChem, 2017, 4, 1450-1456.	3.4	11
52	Preparation and Electrochemical Properties of Highâ€Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Synthesized by using Different Manganese Sources. ChemElectroChem, 2017, 4, 1205-1213.	3.4	23
53	An active core-shell nanoscale design for high voltage cathode of lithium storage devices. Journal of Power Sources, 2017, 360, 409-418.	7.8	21
54	Co-precipitation synthesis and electrochemical properties of CrNbO4 anode materials for lithium-ion batteries. Materials Letters, 2017, 196, 335-338.	2.6	9

#	Article	IF	CITATIONS
55	2D Film of Carbon Nanofibers Elastically Astricted MnO Microparticles: A Flexible Binderâ€Free Anode for Highly Reversible Lithium Ion Storage. Small, 2017, 13, 1604182.	10.0	38
56	A novel LiCoPO ₄ -coated core–shell structure for spinel LiNi _{0.5} Mn _{1.5} O ₄ as a high-performance cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 996-1004.	10.3	58
57	Cyanometallic frameworks derived hierarchical porous Fe 2 O 3 /NiO microflowers with excellent lithium-storage property. Journal of Alloys and Compounds, 2017, 698, 469-475.	5.5	26
58	Low-temperature synthesis of two-dimensional nanostructured Co3O4 and improved electrochemical properties for lithium-ion batteries. Powder Technology, 2017, 309, 22-30.	4.2	16
59	Rapid Microwave Synthesis of Self-Assembled Hierarchical Mn2O3 Microspheres as Advanced Anode Material for Lithium Ion Batteries. Electrochimica Acta, 2017, 224, 285-294.	5.2	35
60	Microemulsion Concentration in Preparation of LiMn ₂ O ₄ Submicron Spherical Particles as Cathode Materials for Highly Reversible Lithiumâ€ion Batteries. ChemElectroChem, 2017, 4, 3204-3211.	3.4	6
61	Enhanced electrochemical performance of LiMn 2 O 4 by constructing a stable Mn 2+ -rich interface. Applied Surface Science, 2017, 426, 19-28.	6.1	25
62	A Novel Blending Adhesive in the Fabrication of the Composite Cathode for Lithiumâ€lon Batteries. ChemElectroChem, 2017, 4, 2709-2716.	3.4	1
63	A facile strategy to construct binder-free flexible carbonate composite anode at low temperature with high performances for lithium-ion batteries. Electrochimica Acta, 2017, 246, 1004-1015.	5.2	18
64	Fast facile synthesis of SnO2/Graphene composite assisted by microwave as anode material for lithium-ion batteries. Electrochimica Acta, 2017, 246, 1104-1111.	5.2	52
65	Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries. Journal of Power Sources, 2017, 337, 82-91.	7.8	84
66	Microstructure and electrochemical properties of advanced Li-rich manganese based cathode material synthesized by self-propagating method. Materials Research Bulletin, 2017, 86, 113-118.	5.2	5
67	Study of carbonization behavior of polyacrylonitrile/tin salt as anode material for lithiumâ€ion batteries. Journal of Applied Polymer Science, 2016, 133, .	2.6	8
68	In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochimica Acta, 2016, 211, 404-410.	5.2	60
69	The role of stable interface in nano-sized FeNbO4 as anode electrode for lithium-ion batteries. Electrochimica Acta, 2016, 203, 206-212.	5.2	24
70	Rapid Self-Assembly Spherical Li _{1.2} Mn _{0.56} Ni _{0.16} Co _{0.08} O ₂ with Improved Performances by Microwave Hydrothermal Method as Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 11476-11487.	8.0	82
71	A novel approach for sulfur-doped hierarchically porous carbon with excellent capacitance for electrochemical energy storage. Chemical Communications, 2016, 52, 12725-12728.	4.1	49
72	A novel PVdF-based composite gel polymer electrolyte doped with ionomer modified graphene oxide. RSC Advances, 2016, 6, 97338-97345.	3.6	19

#	Article	IF	CITATIONS
73	Study of Microstructure Change of Carbon Nanofibers as Binder-Free Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 33091-33101.	8.0	43
74	Preparation of 0.4Li ₂ MnO ₃ ·0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{2< with tunable morphologies via polyacrylonitrile as a template and applications in lithiumâ€ion batteries. Journal of Applied Polymer Science, 2016, 133, .}	:/sub> 2.6	7
75	Li 2 ZrO 3 -coated Li 4 Ti 5 O 12 with nanoscale interface for high performance lithium-ion batteries. Applied Surface Science, 2016, 368, 56-62.	6.1	25
76	The preparation and role of Li2ZrO3 surface coating LiNi0.5Co0.2Mn0.3O2 as cathode for lithium-ion batteries. Applied Surface Science, 2016, 361, 150-156.	6.1	51
77	Large-scale preparation of crinkly NiO layers as anode materials for lithium-ion batteries. Ceramics International, 2016, 42, 3479-3484.	4.8	10
78	Design and self-assembly of metal-organic framework-derived porous Co3O4 hierarchical structures for lithium-ion batteries. Ceramics International, 2016, 42, 5160-5170.	4.8	49
79	Ultrahigh Voltage Synthesis of 2D Amorphous Nickel-Cobalt Hydroxide Nanosheets on CFP for High Performance Energy Storage Device. Electrochimica Acta, 2016, 190, 695-702.	5.2	46
80	Porous Hybrid Composites of Few-Layer MoS ₂ Nanosheets Embedded in a Carbon Matrix with an Excellent Supercapacitor Electrode Performance. Small, 2015, 11, 6480-6490.	10.0	106
81	In Situ Preparation of Sandwich MoO ₃ /C Hybrid Nanostructures for Highâ€Rate and Ultralongâ€Life Supercapacitors. Advanced Functional Materials, 2015, 25, 1886-1894.	14.9	116
82	Bicontinuous Structure of Li ₃ V ₂ (PO ₄) ₃ Clustered via Carbon Nanofiber as High-Performance Cathode Material of Li-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 13934-13943.	8.0	53
83	Preparation and characterization of Li3V2(PO4)3 grown on carbon nanofiber as cathode material for lithium-ion batteries. Electrochimica Acta, 2015, 176, 1358-1363.	5.2	23
84	Synthesis and characterization of 0.95LiMn 0.95 Fe 0.05 PO 4 ·0.05Li 3 V 2 (PO 4) 3 nanocomposite by sol–gel method. Journal of Power Sources, 2015, 287, 316-322.	7.8	13
85	Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery. European Polymer Journal, 2015, 67, 365-372.	5.4	51
86	Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane. Electrochimica Acta, 2015, 151, 289-296.	5.2	73
87	Li2ZrO3 coated LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium batteries. Electrochimica Acta, 2014, 119, 236-242.	5.2	45
88	Li2ZrO3-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery. Journal of Power Sources, 2014, 264, 147-154.	7.8	93
89	Preparation and electrochemical properties of Li3V1.8Mn0.2(PO4)3 doped via different Mn sources. Journal of Power Sources, 2014, 261, 188-197.	7.8	36
90	Porous tin film synthesized by electrodeposition and the electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2014, 149, 330-336.	5.2	14

Gang Yang

#	Article	IF	CITATIONS
91	On the theory of high rate capability of LiMn2O4 with some preferred orientations: insights from the crystal shape algorithm. Physical Chemistry Chemical Physics, 2014, 16, 2553.	2.8	17
92	In situ preparation of SnO2@polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 8334.	10.3	83
93	Co ₃ O ₄ nanostructures with a high rate performance as anode materials for lithium-ion batteries, prepared via book-like cobalt–organic frameworks. CrystEngComm, 2014, 16, 10227-10234.	2.6	40
94	Enhanced high-rate electrochemical performance of Li3V1.8Mn0.2(PO4)3 by atomic doping of Mn(III). Electrochimica Acta, 2014, 125, 338-346.	5.2	21
95	Effects of Microwave-Hydrothermal Conditions on the Purity and Electrochemical Performance of Orthorhombic LiMnO ₂ . ACS Sustainable Chemistry and Engineering, 2014, 2, 359-366.	6.7	21
96	Preparation of Si/Sn-Based Nanoparticles Composited with Carbon Fibers and Improved Electrochemical Performance as Anode Materials. ACS Sustainable Chemistry and Engineering, 2014, 2, 2310-2317.	6.7	30
97	Optimal microwave-assisted hydrothermal synthesis of nanosized x Li 2 MnO 3 ·(1Ââ^' x)LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials for lithium ion battery. Journal of Power Sources, 2014, 247, 219-227.	7.8	57
98	Ultrasonic-assisted synthesis of amorphous Fe3O4 with a high specific surface area and improved capacitance for supercapacitor. Powder Technology, 2014, 256, 499-505.	4.2	47
99	Preparation of hybrid polymer based on polyurethane lithium salt and polyvinylidene fluoride as electrolyte for lithium-ion batteries. Electrochimica Acta, 2014, 136, 513-520.	5.2	22
100	Improved lithium storage properties of electrospun TiO2 with tunable morphology: from porous anatase to necklace rutile. Nanoscale, 2013, 5, 10267.	5.6	26
101	Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates. Nanoscale, 2013, 5, 7613.	5.6	28
102	Polypyrrole doped with redox-active poly(2-methoxyaniline-5-sulfonic acid) for lithium secondary batteries. RSC Advances, 2013, 3, 5447.	3.6	27
103	Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage. Measurement: Journal of the International Measurement Confederation, 2013, 46, 3166-3172.	5.0	85
104	PVDF-based composite microporous gel polymer electrolytes containing a novelsingle ionic conductor SiO2(Li+). Electrochimica Acta, 2013, 112, 183-190.	5.2	51
105	Microwave-assisted hydrothermal synthesis of sphere-like C/CuO and CuO nanocrystals and improved performance as anode materials for lithium-ion batteries. Powder Technology, 2013, 241, 43-48.	4.2	17
106	Real-Time Monitoring on the Adsorption Process of Salicylic Acid onto Chitosan Membrane Using Dielectric Spectroscopy: Macroscale Concentration Polarization and Dynamics. Journal of Physical Chemistry B, 2013, 117, 3337-3344.	2.6	3
107	Microwave rapid preparation of LiNi0.5Mn1.5O4 and the improved high rate performance for lithium-ion batteries. Electrochimica Acta, 2013, 100, 125-132.	5.2	55
108	Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale, 2013, 5, 3793.	5.6	280

Gang Yang

#	Article	IF	CITATIONS
109	Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene. Journal of Materials Chemistry A, 2013, , .	10.3	22
110	Preparation of Mn3O4 nanoparticles at room condition for supercapacitor application. Powder Technology, 2013, 235, 76-81.	4.2	43
111	Preparation and Improved Electrochemical Performance of Li[Li _(1/3–<i>x</i>/3) Cr _{<i>x</i>} Mn <su Nanoparticles Quenched in Iced Water. Journal of Nanoscience and Nanotechnology, 2013, 13, 6617-6626.</su 	B>(2/3 0.9	â § "2<l&g
112	In-situ measurement with fiber Bragg sensors in lithium batteries for safety usage. , 2013, , .		0
113	Improved High Rate Capacity and Lithium Diffusion Ability of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ with Ordered Crystal Structure. Journal of the Electrochemical Society, 2012, 159, A506-A513.	2.9	61
114	Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 11039.	6.7	117
115	Influence of Mn content on the morphology and improved electrochemical properties of Mn3O4 MnO@carbon nanofiber as anode material for lithium batteries. Journal of Power Sources, 2012, 216, 353-362.	7.8	53
116	Lithium diffusion behavior and improved high rate capacity of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium batteries. Solid State Ionics, 2012, 207, 50-56.	2.7	57
117	Crystal Structure and Electrochemical Performances of Proton-Substituted Li2MnO3 and the Nanocomposites Treated by LiMnO2. Journal of the Electrochemical Society, 2011, 158, A1071.	2.9	7
118	Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chemical Communications, 2011, 47, 9110.	4.1	194
119	The effect of tin content to the morphology of Sn/carbon nanofiber and the electrochemical performance as anode material for lithium batteries. Electrochimica Acta, 2011, 58, 44-51.	5.2	51
120	General synthesis and morphology control of LiMnPO4 nanocrystals via microwave-hydrothermal route. Electrochimica Acta, 2011, 56, 3093-3100.	5.2	46
121	The doping effect on the crystal structure and electrochemical properties of LiMnxM1â^xPO4 (M=Mg,) Tj ETQq1	1 0.78431 7.8	4.rgBT /Ove 141
122	Crystal Growth Behavior of LiFePO ₄ in Microwave-Assisted Hydrothermal Condition: From Nanoparticle to Nanosheet. Journal of Nanoscience and Nanotechnology, 2011, 11, 4781-4792.	0.9	7
123	Temperature-controlled microwave solid-state synthesis of Li3V2(PO4)3 as cathode materials for lithium batteries. Journal of Power Sources, 2010, 195, 5374-5378.	7.8	53
124	Electrospun Er:TiO2 nanofibrous films as efficient photocatalysts under solar simulated light. Materials Letters, 2010, 64, 147-150.	2.6	52
125	Microwave solid-state synthesis and electrochemical properties of carbon-free Li3V2(PO4)3 as cathode materials for lithium batteries. Electrochimica Acta, 2010, 55, 2951-2957.	5.2	49
126	Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2 cathodes for lithium batteries. Electrochimica Acta, 2010, 55, 3392-3397.	5.2	41

#	Article	IF	CITATIONS
127	Crystal structure and electrochemical performance of Li3V2(PO4)3 synthesized by optimized microwave solid-state synthesis route. Electrochimica Acta, 2010, 55, 3669-3680.	5.2	35
128	Fast Preparation of LiFePO ₄ Nanoparticles for Lithium Batteries by Microwave-Assisted Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2010, 10, 980-986.	0.9	15
129	Polyaniline-intercalated layered vanadium oxide nanocomposites—One-pot hydrothermal synthesis and application in lithium battery. Nanoscale, 2010, 2, 2131.	5.6	115
130	<l>ln-Situ</l> Controllable Synthesis of Ag Nanoparticles: Irradiation Induced Surface Segregation of Ag ₂ V ₄ O ₁₁ Nanobelt. Journal of Nanoscience and Nanotechnology, 2009, 9, 6554-6559.	0.9	1
131	Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis. Materials Letters, 2009, 63, 331-333.	2.6	71
132	Preparation and electrochemical studies of layered PANI/HNb ₃ O ₈ nanocomposite. Journal of Applied Polymer Science, 2009, 113, 78-86.	2.6	9
133	Electronic structure of oligoaniline doped by inorganic and organic acids. International Journal of Quantum Chemistry, 2008, 108, 1155-1163.	2.0	13
134	Nanocomposites of Polyaniline and a Layered Inorganic Acid Host: Polymerization of Aniline in the Layers, Conformation, and Electrochemical Studies. Advanced Functional Materials, 2007, 17, 401-412.	14.9	70
135	Density Functional Theoretical Studies on Polyaniline/HNb ₃ O ₈ Layered Nanocomposites. Advanced Functional Materials, 2007, 17, 3521-3529.	14.9	18
136	Electrospinning of carbon/CdS coaxial nanofibers with photoluminescence and conductive properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 140, 48-52.	3.5	41
137	Polyaniline/Au Composite Hollow Spheres:Â Synthesis, Characterization, and Application to the Detection of Dopamine. Langmuir, 2006, 22, 4384-4389.	3.5	335
138	Synthesis of polyaniline/MCM-41 composite through surface polymerization of aniline. Journal of Applied Polymer Science, 2006, 101, 2088-2094.	2.6	50
139	Self-Assembly of Polyaniline/Au Composites: From Nanotubes to Nanofibers. Macromolecular Rapid Communications, 2006, 27, 31-36.	3.9	105
140	A novel inorganic–organic polymer electrolyte with a high conductivity: insertion of poly(ethylene) oxide into LiV3O8in one step. Journal of Materials Chemistry, 2005, 15, 1369-1374.	6.7	30
141	Microwave Solid-State Synthesis of LiV3O8as Cathode Material for Lithium Batteries. Journal of Physical Chemistry B, 2005, 109, 11186-11196.	2.6	135
142	Heating Behavior and Crystal Growth Mechanism in Microwave Field. Journal of Physical Chemistry B, 2005, 109, 1371-1379.	2.6	58
143	Investigation of the Structure of MCM-41 Samples with a High Copper Content. Advanced Functional Materials, 2004, 14, 816-820.	14.9	83