List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1295785/publications.pdf Version: 2024-02-01

PAIESH N DAVÃO

#	Article	IF	CITATIONS
1	Discrete element method simulation of binary blend mixing of cohesive particles in a highâ€intensity vibration system. AICHE Journal, 2022, 68, .	3.6	3
2	A cell-based PBM for continuous open-circuit dry milling: Impact of axial mixing, nonlinear breakage, and screen size. Powder Technology, 2022, 399, 117099.	4.2	3
3	Decoding Fine API Agglomeration as a Key Indicator of Powder Flowability and Dissolution: Impact of Particle Engineering. Pharmaceutical Research, 2022, 39, 3079-3098.	3.5	3
4	Assessing predictability of packing porosity and bulk density enhancements after dry coating of pharmaceutical powders. Powder Technology, 2021, 377, 709-722.	4.2	18
5	Impact of Mixing on Content Uniformity of Thin Polymer Films Containing Drug Micro-Doses. Pharmaceutics, 2021, 13, 812.	4.5	3
6	Impact of Matrix Surface Area on Griseofulvin Release from Extrudates Prepared via Nanoextrusion. Pharmaceutics, 2021, 13, 1036.	4.5	7
7	Impact of altered hydrophobicity and reduced agglomeration on dissolution of micronized poorly water-soluble drug powders after dry coating. International Journal of Pharmaceutics, 2021, 606, 120853.	5.2	12
8	Impact of solvents during wet stirred media milling of cross-linked biopolymer suspensions. Advanced Powder Technology, 2021, 32, 4562-4575.	4.1	7
9	Enhanced Supersaturation via Fusion-Assisted Amorphization during FDM 3D Printing of Crystalline Poorly Soluble Drug Loaded Filaments. Pharmaceutics, 2021, 13, 1857.	4.5	9
10	Effect of solvents and cellulosic polymers on quality attributes of films loaded with a poorly water-soluble drug. Carbohydrate Polymers, 2020, 250, 117012.	10.2	8
11	Exploring tablet design options for tailoring drug release and dose via fused deposition modeling (FDM) 3D printing. International Journal of Pharmaceutics, 2020, 591, 119987.	5.2	37
12	Fine grade engineered microcrystalline cellulose excipients for direct compaction: Assessing suitability of different dry coating processes. European Journal of Pharmaceutical Sciences, 2020, 151, 105408.	4.0	10
13	Efavirenz nanomicelles loaded vaginal film (EZ film) for preexposure prophylaxis (PrEP) of HIV. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111174.	5.0	14
14	Influence of guest and host particle sizes on dry coating effectiveness: When not to use high mixing intensity. Powder Technology, 2020, 366, 150-163.	4.2	18
15	Fenofibrate Nanocrystal Composite Microparticles for Intestine-Specific Oral Drug Delivery System. Pharmaceuticals, 2019, 12, 109.	3.8	10
16	Convective Drying Kinetics of Polymer Strip Films Loaded with a BCS Class II Drug. AAPS PharmSciTech, 2019, 20, 40.	3.3	3
17	A predictive transport model for convective drying of polymer strip films loaded with a BCS Class II drug. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 164-174.	4.3	5
18	Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs. International Journal of Pharmaceutics, 2019, 557, 354-365.	5.2	28

#	Article	IF	CITATIONS
19	Effect of Particle Size and Polymer Loading on Dissolution Behavior of Amorphous Griseofulvin Powder. Journal of Pharmaceutical Sciences, 2019, 108, 234-242.	3.3	25
20	Zero-order release of poorly water-soluble drug from polymeric films made via aqueous slurry casting. European Journal of Pharmaceutical Sciences, 2018, 117, 245-254.	4.0	28
21	Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating. International Journal of Pharmaceutics, 2018, 543, 288-299.	5.2	51
22	A pseudo-coupled DEM–non-linear PBM approach for simulating the evolution of particle size during dry milling. Powder Technology, 2018, 323, 374-384.	4.2	21
23	Stable and Fast-Dissolving Amorphous Drug Composites Preparation via Impregnation of Neusilin® UFL2. Journal of Pharmaceutical Sciences, 2018, 107, 170-182.	3.3	31
24	Incorporation of surface-modified dry micronized poorly water-soluble drug powders into polymer strip films. International Journal of Pharmaceutics, 2018, 535, 462-472.	5.2	18
25	Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose. International Journal of Pharmaceutics, 2018, 536, 127-137.	5.2	40
26	Quiescent and Agitated Redispersion as a Tool for Evaluating Dispersant Effectiveness in Dissolution Enhancement of Drug-Laden Nanocomposites. AAPS PharmSciTech, 2018, 19, 436-447.	3.3	2
27	Ultra-fine dispersible powders coated with l-Leucine via two-step co-milling. Advanced Powder Technology, 2018, 29, 2957-2965.	4.1	11
28	Fast release of liquid antisolvent precipitated fenofibrate at high drug loading from biocompatible thin films. Advanced Powder Technology, 2018, 29, 2907-2919.	4.1	4
29	Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties. International Journal of Pharmaceutics, 2018, 546, 125-136.	5.2	23
30	Discrete element method based analysis of mixing and collision dynamics in adhesive mixing process. Chemical Engineering Science, 2018, 190, 220-231.	3.8	12
31	Sustained Release of Poorly Water-Soluble Drug from Hydrophilic Polymeric Film Sandwiched Between Hydrophobic Layers. AAPS PharmSciTech, 2018, 19, 2572-2584.	3.3	6
32	Bioavailability Enhancement of Poorly Water-Soluble Drugs via Nanocomposites: Formulation–Processing Aspects and Challenges. Pharmaceutics, 2018, 10, 86.	4.5	140
33	Impact of Superdisintegrants and Film Thickness on Disintegration Time of Strip Films Loaded With Poorly Water-Soluble Drug Microparticles. Journal of Pharmaceutical Sciences, 2018, 107, 2107-2118.	3.3	21
34	Impact of dispersants on dissolution of itraconazole from drug-loaded, surfactant-free, spray-dried nanocomposites. Powder Technology, 2018, 339, 281-295.	4.2	18
35	Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression. Journal of Pharmaceutical Sciences, 2017, 106, 1608-1617.	3.3	32
36	Polymorph formation in fenofibrate in the absence and presence of polymer stabilizers: a low wavenumber Raman and differential scanning calorimetry study. Journal of Raman Spectroscopy, 2017, 48, 750-757.	2.5	4

#	Article	IF	CITATIONS
37	Improving blend content uniformity via dry particle coating of micronized drug powders. European Journal of Pharmaceutical Sciences, 2017, 104, 344-355.	4.0	29
38	Properties of force networks in jammed granular media. Granular Matter, 2017, 19, 1.	2.2	6
39	Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading. International Journal of Pharmaceutics, 2017, 523, 33-41.	5.2	24
40	Breakage of fractal agglomerates. Chemical Engineering Science, 2017, 161, 117-126.	3.8	46
41	Critical Material Attributes of Strip Films Loaded With Poorly Water-Soluble Drug Nanoparticles: II. Impact of Polymer Molecular Weight. Journal of Pharmaceutical Sciences, 2017, 106, 619-628.	3.3	23
42	Adhesion and friction of dry-coated nano-rough particles. Powder Technology, 2017, 314, 20-27.	4.2	10
43	Nanomilling of Drugs for Bioavailability Enhancement: A Holistic Formulation-Process Perspective. Pharmaceutics, 2016, 8, 17.	4.5	148
44	Investigation of nanoparticle agglomerates properties using Monte Carlo simulations. Advanced Powder Technology, 2016, 27, 1971-1979.	4.1	56
45	Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size. International Journal of Pharmaceutics, 2016, 513, 319-331.	5.2	33
46	Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution. European Journal of Pharmaceutical Sciences, 2016, 92, 146-155.	4.0	37
47	Fluid bed film coating of fine ibuprofen particles. Powder Technology, 2016, 290, 102-113.	4.2	20
48	Incorporation of Fenofibrate Nanoparticles Prepared by Melt Emulsification into Polymeric Films. Journal of Pharmaceutical Innovation, 2016, 11, 53-63.	2.4	18
49	Preparation and characterization of fast dissolving pullulan films containing BCS class II drug nanoparticles for bioavailability enhancement. Drug Development and Industrial Pharmacy, 2016, 42, 1073-1085.	2.0	49
50	An Intensified Vibratory Milling Process for Enhancing the Breakage Kinetics during the Preparation of Drug Nanosuspensions. AAPS PharmSciTech, 2016, 17, 389-399.	3.3	19
51	Spray drying of drug-swellable dispersant suspensions for preparation of fast-dissolving, high drug-loaded, surfactant-free nanocomposites. Drug Development and Industrial Pharmacy, 2015, 41, 1617-1631.	2.0	36
52	Explaining Electrostatic Charging and Flow of Surface-Modified Acetaminophen Powders as a Function of Relative Humidity Through Surface Energetics. Journal of Pharmaceutical Sciences, 2015, 104, 2225-2232.	3.3	25
53	Controlled Release from Drug Microparticles via Solventless Dry-Polymer Coating. Journal of Pharmaceutical Sciences, 2015, 104, 1340-1351.	3.3	18
54	Enhanced physical stabilization of fenofibrate nanosuspensions via wet co-milling with a superdisintegrant and an adsorbing polymer. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 372-385.	4.3	50

#	Article	IF	CITATIONS
55	Novel use of superdisintegrants as viscosity enhancing agents in biocompatible polymer films containing griseofulvin nanoparticles. Powder Technology, 2015, 285, 25-33.	4.2	23
56	Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating. Journal of Pharmaceutical Sciences, 2015, 104, 2076-2084.	3.3	14
57	Polymer strip films as a robust, surfactant-free platform for delivery of BCS Class II drug nanoparticles. International Journal of Pharmaceutics, 2015, 489, 45-57.	5.2	48
58	Sub-100nm drug particle suspensions prepared via wet milling with low bead contamination through novel process intensification. Chemical Engineering Science, 2015, 130, 207-220.	3.8	76
59	Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating. International Journal of Pharmaceutics, 2015, 478, 447-455.	5.2	78
60	On the origin of non-linear breakage kinetics in dry milling. Powder Technology, 2015, 272, 189-203.	4.2	19
61	Sub-100 micron fast dissolving nanocomposite drug powders. Powder Technology, 2015, 271, 49-60.	4.2	34
62	Flow and bulk density enhancements of pharmaceutical powders using a conical screen mill: A continuous dry coating device. Chemical Engineering Science, 2015, 125, 209-224.	3.8	57
63	Discrete element method simulation of a conical screen mill: A continuous dry coating device. Chemical Engineering Science, 2015, 125, 58-74.	3.8	37
64	Concentrated Fenofibrate Nanoparticle Suspensions from Melt Emulsification for Enhanced Drug Dissolution. Chemical Engineering and Technology, 2014, 37, 157-167.	1.5	13
65	Insight into first-order breakage kinetics using a particle-scale breakage rate constant. Chemical Engineering Science, 2014, 117, 318-330.	3.8	43
66	Formulation of a physically motivated specific breakage rate parameter for ball milling via the discrete element method. AICHE Journal, 2014, 60, 2404-2415.	3.6	39
67	Enhanced recovery and dissolution of griseofulvin nanoparticles from surfactant-free nanocomposite microparticles incorporating wet-milled swellable dispersants. Drug Development and Industrial Pharmacy, 2014, 40, 1509-1522.	2.0	33
68	Preparation of concentrated stable fenofibrate suspensions via liquid antisolvent precipitation. Drug Development and Industrial Pharmacy, 2014, 40, 1693-1703.	2.0	11
69	Raman spectroscopy for in-line and off-line quantification of poorly soluble drugs in strip films. International Journal of Pharmaceutics, 2014, 475, 428-437.	5.2	28
70	Solventless polymer coating of microparticles. Powder Technology, 2014, 261, 118-132.	4.2	16
71	Prediction of porosity from particle scale interactions: Surface modification of fine cohesive powders. Powder Technology, 2014, 254, 103-113.	4.2	48
72	Redispersible fast dissolving nanocomposite microparticles of poorly water-soluble drugs. International Journal of Pharmaceutics, 2014, 461, 367-379.	5.2	53

#	Article	IF	CITATIONS
73	Preparation of stable colloidal suspensions of superdisintegrants via wet stirred media milling. Particuology, 2014, 14, 76-82.	3.6	14
74	Polymorph stabilization in processed acetaminophen powders. Powder Technology, 2013, 236, 52-62.	4.2	15
75	Influence of non-linear breakage kinetics on the attainment of self-similarity for dry milling processes. Chemical Engineering Science, 2013, 97, 96-107.	3.8	6
76	Recovery of BCS Class II drugs during aqueous redispersion of core–shell type nanocomposite particles produced via fluidized bed coating. Powder Technology, 2013, 236, 221-234.	4.2	53
77	A study of the physical stability of wet media-milled fenofibrate suspensions using dynamic equilibrium curves. Chemical Engineering Research and Design, 2013, 91, 1245-1258.	5.6	75
78	Dispersion of fine and ultrafine powders through surface modification and rapid expansion. Chemical Engineering Science, 2013, 85, 11-24.	3.8	55
79	Effects of stabilizers on particle redispersion and dissolution from polymer strip films containing liquid antisolvent precipitated griseofulvin particles. Powder Technology, 2013, 236, 37-51.	4.2	45
80	Formation of stainless steel–carbon nanotube composites using a scalable chemical vapor infiltration process. Journal of Materials Science, 2013, 48, 1387-1395.	3.7	23
81	Investigating the applicability of inverse gas chromatography to binary powdered systems: An application of surface heterogeneity profiles to understanding preferential probe-surface interactions. International Journal of Pharmaceutics, 2013, 445, 39-46.	5.2	26
82	Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection. International Journal of Pharmaceutics, 2013, 455, 93-103.	5.2	46
83	Precipitation and stabilization of ultrafine particles of Fenofibrate in aqueous suspensions by RESOLV. Powder Technology, 2013, 236, 75-84.	4.2	36
84	Discrete element method simulation of cohesive particles mixing under magnetically assisted impaction. Powder Technology, 2013, 243, 96-109.	4.2	47
85	Fluidization and mixing of nanoparticle agglomerates assisted via magnetic impaction. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	19
86	Dynamic simulation of particle packing influenced by size, aspect ratio and surface energy. Granular Matter, 2013, 15, 401-415.	2.2	72
87	Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading. International Journal of Pharmaceutics, 2013, 442, 74-85.	5.2	70
88	Multi-faceted characterization of pharmaceutical powders to discern the influence of surface modification. Powder Technology, 2013, 236, 63-74.	4.2	56
89	Passivation of High-Surface-Energy Sites of Milled Ibuprofen Crystals via Dry Coating for Reduced Cohesion and Improved Flowability. Journal of Pharmaceutical Sciences, 2013, 102, 2282-2296.	3.3	68
90	Using USP I and USP IV for Discriminating Dissolution Rates of Nano- and Microparticle-Loaded Pharmaceutical Strip-Films. AAPS PharmSciTech, 2012, 13, 1473-1482.	3.3	59

#	Article	IF	CITATIONS
91	A rational function approximation to the effectiveness factor for multi-particle interactions in dense-phase dry milling. Powder Technology, 2012, 230, 67-76.	4.2	8
92	Robust clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2, 29-59.	6.8	19
93	Atomistic simulations of aqueous griseofulvin crystals in the presence of individual and multiple additives. Chemical Engineering Science, 2012, 73, 218-230.	3.8	31
94	Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS Class II drug nanoparticles for pharmaceutical applications. International Journal of Pharmaceutics, 2012, 423, 496-508.	5.2	138
95	Improvement of flow and bulk density of pharmaceutical powders using surface modification. International Journal of Pharmaceutics, 2012, 423, 213-225.	5.2	124
96	Adhesion of dry nano-coated microparticles to stainless steel: A physical interpretation. Powder Technology, 2012, 226, 1-9.	4.2	7
97	Prediction of Inter-particle Adhesion Force from Surface Energy and Surface Roughness. Journal of Adhesion Science and Technology, 2011, 25, 367-384.	2.6	79
98	Novel aspects of wet milling for the production of microsuspensions and nanosuspensions of poorly water-soluble drugs. Drug Development and Industrial Pharmacy, 2011, 37, 963-976.	2.0	99
99	Emergence of falsified kinetics as a consequence of multi-particle interactions in dense-phase comminution processes. Chemical Engineering Science, 2011, 66, 5672-5672.	3.8	14
100	Nanoparticle mixing through rapid expansion of high pressure and supercritical suspensions. Journal of Nanoparticle Research, 2011, 13, 4253-4266.	1.9	20
101	Simultaneous micronization and surface modification for improvement of flow and dissolution of drug particles. International Journal of Pharmaceutics, 2011, 415, 185-195.	5.2	135
102	Identification of the breakage rate and distribution parameters in a non-linear population balance model for batch milling. Powder Technology, 2011, 208, 195-204.	4.2	52
103	Environmentally benign dry mechanical mixing of nano-particles using magnetically assisted impaction mixing process. Powder Technology, 2011, 209, 138-146.	4.2	12
104	Application of fluidized bed film coating for membrane encapsulation of catalysts. Powder Technology, 2011, 211, 199-206.	4.2	15
105	Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density. Powder Technology, 2011, 212, 397-402.	4.2	122
106	Enhanced nanofluidization by alternating electric fields. AICHE Journal, 2010, 56, 54-65.	3.6	22
107	Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation. International Journal of Pharmaceutics, 2010, 387, 172-179.	5.2	82
108	Near-Infrared Spectroscopy for the In-Line Characterization of Powder Voiding Part II: Quantification of Enhanced Flow Properties of Surface Modified Active Pharmaceutical Ingredients. Journal of Pharmaceutical Innovation, 2010, 5, 1-13.	2.4	24

#	Article	IF	CITATIONS
109	The effect of surface modification of aluminum powder on its flowability, combustion and reactivity. Powder Technology, 2010, 204, 63-70.	4.2	67
110	Controlled liquid antisolvent precipitation using a rapid mixing device. Chemical Engineering Science, 2010, 65, 5669-5675.	3.8	77
111	Characterization of particle and bulk level cohesion reduction of surface modified fine aluminum powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 66-80.	4.7	99
112	A context-sensitive crossover operator for clustering applications. , 2010, , .		1
113	Pull-off force of coated fine powders under small consolidation. Physical Review E, 2009, 79, 041305.	2.1	43
114	Deagglomeration of nanoparticle aggregates via rapid expansion of supercritical or highâ€pressure suspensions. AICHE Journal, 2009, 55, 2807-2826.	3.6	53
115	Granulation of cohesive Geldart group C powders in a Mini-Glatt fluidized bed by pre-coating with nanoparticles. Powder Technology, 2009, 191, 206-217.	4.2	47
116	Environmentally benign nanomixing by sonication in high-pressure carbon dioxide. Journal of Nanoparticle Research, 2009, 11, 405-419.	1.9	18
117	Near-infrared Spectroscopy for the In-line Characterization of Powder Voiding Part I: Development of the Methodology. Journal of Pharmaceutical Innovation, 2009, 4, 187-197.	2.4	23
118	Fluidized bed film coating of cohesive Geldart group C powders. Powder Technology, 2009, 189, 466-480.	4.2	41
119	In-situ, simultaneous milling and coating of particulates with nanoparticles. Powder Technology, 2009, 196, 292-297.	4.2	25
120	Mechanical alloying and reactive milling in a high energy planetary mill. Journal of Alloys and Compounds, 2009, 478, 246-251.	5.5	70
121	Controlling Particle Size of a Poorly Water-Soluble Drug Using Ultrasound and Stabilizers in Antisolvent Precipitation. Industrial & Engineering Chemistry Research, 2009, 48, 7581-7593.	3.7	186
122	Fluidization of fine and ultrafine particles using nitrogen and neon as fluidizing gases. AICHE Journal, 2008, 54, 86-103.	3.6	56
123	Fluidization of coated group C powders. AICHE Journal, 2008, 54, 104-121.	3.6	138
124	Agglomerates and granules of nanoparticles as filter media for submicron particles. Powder Technology, 2008, 183, 480-500.	4.2	25
125	Mechanical Alloying and Reactive Milling in a High Energy Planetary Mill. , 2008, , .		1
126	Feature Extraction Using Molecular Planes for Fuzzy Relational Clustering of a Flexible Dopamine Reuptake Inhibitor. Journal of Chemical Information and Modeling, 2007, 47, 2216-2227.	5.4	5

#	Article	IF	CITATIONS
127	Effect of solvent strength and operating pressure on the formation of submicrometer polymer particles in supercritical microjets. Journal of Supercritical Fluids, 2007, 43, 341-356.	3.2	51
128	Evaluation of assisting methods on fluidization of hydrophilic nanoagglomerates by monitoring moisture in the gas phase. Chemical Engineering Science, 2007, 62, 2608-2622.	3.8	13
129	The application of a supercritical antisolvent process for sustained drug delivery. Powder Technology, 2006, 164, 94-102.	4.2	61
130	Fluidization of nanoagglomerates in a rotating fluidized bed. AICHE Journal, 2006, 52, 2401-2412.	3.6	88
131	Dry particle coating for improving the flowability of cohesive powders. Powder Technology, 2005, 158, 21-33.	4.2	356
132	A study of mechanical alloying processes using reactive milling and discrete element modeling. Acta Materialia, 2005, 53, 2909-2918.	7.9	79
133	Hydrodynamic fragmentation of nanoparticle aggregates at orthokinetic coagulation. Advances in Colloid and Interface Science, 2005, 114-115, 119-131.	14.7	15
134	Gas fluidization characteristics of nanoparticle agglomerates. AICHE Journal, 2005, 51, 426-439.	3.6	193
135	Polymer encapsulation of fine particles by a supercritical antisolvent process. AICHE Journal, 2005, 51, 440-455.	3.6	56
136	Enhanced fluidization of nanoparticles in an oscillating magnetic field. AICHE Journal, 2005, 51, 1971-1979.	3.6	117
137	Synthesis of Macroporous PMMA/Silica Nanocomposite Monoliths in Supercritical Carbon Dioxide. Macromolecular Rapid Communications, 2005, 26, 1406-1411.	3.9	19
138	Novel Feature Extraction Technique for Fuzzy Relational Clustering of a Flexible Dopamine Reuptake Inhibitor ChemInform, 2005, 36, no.	0.0	0
139	Numerical Simulation of Mechanical Alloying in a Shaker Mill by Discrete Element Method. KONA Powder and Particle Journal, 2005, 23, 152-162.	1.7	10
140	Novel Feature Extraction Technique for Fuzzy Relational Clustering of a Flexible Dopamine Reuptake Inhibitor. Journal of Chemical Information and Modeling, 2005, 45, 610-623.	5.4	8
141	Fine particle coating by a novel rotating fluidized bed coater. Powder Technology, 2004, 141, 172-176.	4.2	85
142	Improvement of humidity resistance of magnesium powder using dry particle coating. Powder Technology, 2004, 140, 86-97.	4.2	53
143	Sound assisted fluidization of nanoparticle agglomerates. Powder Technology, 2004, 141, 119-123.	4.2	134
144	Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. Journal of Supercritical Fluids, 2004, 28, 85-99.	3.2	140

#	Article	IF	CITATIONS
145	Particle encapsulation with polymers via in situ polymerization in supercritical CO2. Powder Technology, 2004, 146, 32-45.	4.2	38
146	Numerical simulation of Mechanofusion system. Powder Technology, 2004, 146, 121-136.	4.2	40
147	Aerated vibrofluidization of silica nanoparticles. AICHE Journal, 2004, 50, 1776-1785.	3.6	179
148	Experimental Study on Fluidization Characteristics of Nanoparticles. , 2004, , 361.		0
149	Numerical simulation of dry particle coating processes by the discrete element method. Advanced Powder Technology, 2003, 14, 449-470.	4.1	23
150	Mixing of nano-particles by rapid expansion of high-pressure suspensions. Advanced Powder Technology, 2003, 14, 471-493.	4.1	23
151	Microgranulation of fine powders by a novel rotating fluidized bed granulator. Powder Technology, 2003, 131, 250-255.	4.2	62
152	Numerically simulated flow characteristics of particulate beds in oscillating sectorial containers. Powder Technology, 2003, 133, 91-105.	4.2	5
153	Promotion of deactivated sintering by dry-particle coating. AICHE Journal, 2003, 49, 604-618.	3.6	10
154	Estimation of the Characteristic Time Scales in the Supercritical Antisolvent Process. Industrial & Engineering Chemistry Research, 2003, 42, 3156-3162.	3.7	60
155	Extraction and precipitation particle coating using supercritical CO2. Powder Technology, 2002, 127, 32-44.	4.2	31
156	Mixing and Characterization of Nanosized Powders: An Assessment of Different Techniques. Journal of Nanoparticle Research, 2002, 4, 21-41.	1.9	137
157	Synthesis of engineered particulates with tailored properties using dry particle coating. Powder Technology, 2001, 117, 40-67.	4.2	321
158	Magnetically mediated flow enhancement for controlled powder discharge of cohesive powders. Powder Technology, 2000, 112, 111-125.	4.2	16
159	Dry particle coating using magnetically assisted impaction coating: modification of surface properties and optimization of system and operating parameters. Powder Technology, 2000, 112, 137-148.	4.2	95
160	NON-INTRUSIVE PARTICLE TRACKING SYSTEM FOR PARTICULATE FLOWS AND VIBRATED GRANULAR BEDS. Particulate Science and Technology, 1999, 17, 125-139.	2.1	4
161	Nonintrusive rigid body tracking technique for dry particulate flows. Part I. Theoretical aspects. Review of Scientific Instruments, 1998, 69, 3598-3605.	1.3	3
162	Nonintrusive rigid body tracking technique for dry particulate flows. Part II. Practical aspects and implementation. Review of Scientific Instruments, 1998, 69, 3606-3613.	1.3	3

#	Article	IF	CITATIONS
163	Rise-Time Regimes of a Large Sphere in Vibrated Bulk Solids. Physical Review Letters, 1997, 78, 1255-1258.	7.8	79
164	Validating fuzzy partitions obtained through c-shells clustering. Pattern Recognition Letters, 1996, 17, 613-623.	4.2	225
165	Application of the least trimmed squares technique to prototype-based clustering. Pattern Recognition Letters, 1996, 17, 633-641.	4.2	44
166	Characterization of clustering microstructure in highly inelastic low density uniform granular shear flows. Mechanics Research Communications, 1995, 22, 335-342.	1.8	6
167	Robust shape detection using fuzzy clustering: practical applications. Fuzzy Sets and Systems, 1994, 65, 161-185.	2.7	30
168	Generalized fuzzy c-shells clustering and detection of circular and elliptical boundaries. Pattern Recognition, 1992, 25, 713-721.	8.1	91
169	Effect of the Circulation Number on the Stratification Coefficient for Solar Heating Systems. Journal of Solar Energy Engineering, Transactions of the ASME, 1991, 113, 250-256.	1.8	0
170	Characterization and detection of noise in clustering. Pattern Recognition Letters, 1991, 12, 657-664.	4.2	671
171	FUZZY SHELL-CLUSTERING AND APPLICATIONS TO CIRCLE DETECTION IN DIGITAL IMAGES. International Journal of General Systems, 1990, 16, 343-355.	2.5	180
172	Use Of The Adaptive Fuzzy Clustering Algorithm To Detect Lines In Digital Images. , 1990, , .		26