José Pedro Friedmann Angeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1295739/publications.pdf

Version: 2024-02-01

63 papers 18,079 citations

39 h-index 64 g-index

74 all docs

74 docs citations

74 times ranked 14071 citing authors

#	Article	IF	CITATIONS
1	CD8+ TÂcells PUF(A)ing the flames of cancer ferroptotic cell death. Cancer Cell, 2022, 40, 346-348.	16.8	18
2	GPX4: old lessons, new features. Biochemical Society Transactions, 2022, 50, 1205-1213.	3.4	15
3	NRF2â€dependent stress defense in tumor antioxidant control and immune evasion. Pigment Cell and Melanoma Research, 2021, 34, 268-279.	3.3	20
4	Heck reaction synthesis of anthracene and naphthalene derivatives as traps and clean chemical sources of singlet molecular oxygen in biological systems. Photochemical and Photobiological Sciences, 2020, 19, 1590-1602.	2.9	7
5	The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression. Oncogene, 2020, 39, 6841-6855.	5.9	53
6	Loss of the cystine/glutamate antiporter in melanoma abrogates tumor metastasis and markedly increases survival rates of mice. International Journal of Cancer, 2020, 147, 3224-3235.	5.1	39
7	Active steroid hormone synthesis renders adrenocortical cells highly susceptible to type II ferroptosis induction. Cell Death and Disease, 2020, 11, 192.	6. 3	39
8	Emerging aspects in the regulation of ferroptosis. Biochemical Society Transactions, 2020, 48, 2253-2259.	3.4	15
9	FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575, 693-698.	27.8	1,624
10	Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nature Reviews Cancer, 2019, 19, 405-414.	28.4	742
11	Ferroptosis: The Greasy Side of Cell Death. Chemical Research in Toxicology, 2019, 32, 362-369.	3.3	38
12	Novel Allosteric Activators for Ferroptosis Regulator Glutathione Peroxidase 4. Journal of Medicinal Chemistry, 2019, 62, 266-275.	6.4	91
13	Selenium and GPX4, a vital symbiosis. Free Radical Biology and Medicine, 2018, 127, 153-159.	2.9	127
14	Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 2018, 172, 409-422.e21.	28.9	920
15	Quantitative Profiling of Protein Carbonylations in Ferroptosis by an Aniline-Derived Probe. Journal of the American Chemical Society, 2018, 140, 4712-4720.	13.7	139
16	Lipoxygenases—Killers against Their Will?. ACS Central Science, 2018, 4, 312-314.	11.3	8
17	Activation of Glutathione Peroxidase 4 as a Novel Anti-inflammatory Strategy. Frontiers in Pharmacology, 2018, 9, 1120.	3.5	98
18	Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. Journal of Clinical Investigation, 2018, 128, 3341-3355.	8.2	406

#	Article	IF	CITATIONS
19	Glutathione Peroxidases., 2018,, 260-276.		3
20	On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Central Science, 2017, 3, 232-243.	11.3	583
21	Direct participation of DNA in the formation of singlet oxygen and base damage under UVA irradiation. Free Radical Biology and Medicine, 2017, 108, 86-93.	2.9	21
22	Ferroptosis Inhibition: Mechanisms and Opportunities. Trends in Pharmacological Sciences, 2017, 38, 489-498.	8.7	389
23	Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017, 171, 273-285.	28.9	4,081
24	Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 2017, 13, 81-90.	8.0	1,589
25	ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology, 2017, 13, 91-98.	8.0	2,069
26	Glutathione Peroxidase 4 and Ferroptosis. , 2016, , 511-521.		1
27	Regulated necrosis: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery, 2016, 15, 348-366.	46.4	481
28	Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming. Cell Stem Cell, 2016, 18, 396-409.	11.1	307
29	Human thioredoxin 2 deficiency impairs mitochondrial redox homeostasis and causes early-onset neurodegeneration. Brain, 2016, 139, 346-354.	7.6	86
30	Knockout of Mitochondrial Thioredoxin Reductase Stabilizes Prolyl Hydroxylase 2 and Inhibits Tumor Growth and Tumor-Derived Angiogenesis. Antioxidants and Redox Signaling, 2015, 22, 938-950.	5.4	46
31	Glutathione peroxidase 4 (Gpx4) and ferroptosis: what's so special about it?. Molecular and Cellular Oncology, 2015, 2, e995047.	0.7	97
32	Cardiolipin Signaling Mechanisms: Collapse of Asymmetry and Oxidation. Antioxidants and Redox Signaling, 2015, 22, 1667-1680.	5.4	50
33	Expression of a Catalytically Inactive Mutant Form of Glutathione Peroxidase 4 (Gpx4) Confers a Dominant-negative Effect in Male Fertility. Journal of Biological Chemistry, 2015, 290, 14668-14678.	3.4	69
34	The antioxidant requirement for plasma membrane repair in skeletal muscle. Free Radical Biology and Medicine, 2015, 84, 246-253.	2.9	31
35	ROS, thiols and thiol-regulating systems in male gametogenesis. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1566-1574.	2.4	31
36	Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 2014, 16, 1180-1191.	10.3	2,241

#	Article	IF	CITATIONS
37	Antigenotoxic Properties of Chlorophyll b Against Cisplatin-Induced DNA Damage and its Relationship with Distribution of Platinum and Magnesium In Vivo. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 345-353.	2.3	11
38	Glutathione and thioredoxin dependent systems in neurodegenerative disease: What can be learned from reverse genetics in mice. Neurochemistry International, 2013, 62, 738-749.	3.8	30
39	Dietary carotenoid lutein protects against DNA damage and alterations of the redox status induced by cisplatin in human derived HepG2 cells. Toxicology in Vitro, 2012, 26, 288-294.	2.4	44
40	Singlet molecular oxygen trapping by the fluorescent probe diethyl-3,3′-(9,10-anthracenediyl)bisacrylate synthesized by the Heck reaction. Photochemical and Photobiological Sciences, 2011, 10, 1546-1555.	2.9	26
41	[¹³ C ₂]- Acetaldehyde Promotes Unequivocal Formation of 1, <i>N</i> ² -Propano-2′-deoxyguanosine in Human Cells. Journal of the American Chemical Society, 2011, 133, 9140-9143.	13.7	62
42	Generation of Singlet Oxygen by the Glyoxal–Peroxynitrite System. Journal of the American Chemical Society, 2011, 133, 20761-20768.	13.7	30
43	Evaluation of protective effects of fish oil against oxidative damage in rats exposed to methylmercury. Ecotoxicology and Environmental Safety, 2011, 74, 487-493.	6.0	42
44	Quercetin protects human-derived liver cells against mercury-induced DNA-damage and alterations of the redox status. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 726, 109-115.	1.7	45
45	In vitro genotoxicity assessment of caffeic, cinnamic and ferulic acids. Genetics and Molecular Research, 2011, 10, 1130-1140.	0.2	42
46	Lipid hydroperoxide-induced and hemoglobin-enhanced oxidative damage to colon cancer cells. Free Radical Biology and Medicine, 2011, 51, 503-515.	2.9	56
47	Protective properties of quercetin against DNA damage and oxidative stress induced by methylmercury in rats. Archives of Toxicology, 2011, 85, 1151-1157.	4.2	68
48	Evaluation of Antigenotoxic Effects of Plant Flavonoids Quercetin and Rutin on <scp>HepG2</scp> Cells. Phytotherapy Research, 2011, 25, 1381-1388.	5.8	43
49	Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays. Genetics and Molecular Biology, 2010, 33, 169-175.	1.3	18
50	Evaluation of the genotoxic and anti-genotoxic activities of Silybin in human hepatoma cells (HepG2). Mutagenesis, 2010, 25, 223-229.	2.6	27
51	Chlorination treatment of aqueous samples reduces, but does not eliminate, the mutagenic effect of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 703, 200-208.	1.7	80
52	Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 462-471.	3.8	68
53	Effect of annatto on micronuclei induction by direct and indirect mutagens in HepG2 cells. Environmental and Molecular Mutagenesis, 2009, 50, 808-814.	2.2	13
54	î²-Glucan extracted from the medicinal mushroom Agaricus blazei prevents the genotoxic effects of benzo[a]pyrene in the human hepatoma cell line HepG2. Archives of Toxicology, 2009, 83, 81-86.	4.2	49

#	Article	IF	CITATIONS
55	Low levels of methylmercury induce DNA damage in rats: protective effects of selenium. Archives of Toxicology, 2009, 83, 249-254.	4.2	68
56	Evaluation of the antigenotoxicity of polysaccharides and \hat{l}^2 -glucans from Agaricus blazei, a model study with the single cell gel electrophoresis/Hep G2 assay. Journal of Food Composition and Analysis, 2009, 22, 699-703.	3.9	12
57	The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 676, 83-86.	1.7	105
58	Protective effects of \hat{l}^2 -glucan extracted from barley against benzo[a]pyrene-induced DNA damage in hepatic cell HepG2. Experimental and Toxicologic Pathology, 2009, 61, 83-89.	2.1	15
59	\hat{l}^2 -Glucans in promoting health: Prevention against mutation and cancer. Mutation Research - Reviews in Mutation Research, 2008, 658, 154-161.	5.5	193
60	Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2. Toxicology in Vitro, 2007, 21, 1650-1655.	2.4	175
61	Antigenotoxicity of Agaricus blazei mushroom organic and aqueous extracts in chromosomal aberration and cytokinesis block micronucleus assays in CHO- $k1$ and HTC cells. Toxicology in Vitro, 2006, 20, 355-360.	2.4	48
62	Protective effects of \hat{l}^2 -glucan extracted from Agaricus brasiliensis against chemically induced DNA damage in human lymphocytes. Cell Biology and Toxicology, 2006, 22, 285-291.	5. 3	69
63	Anti-clastogenic effect of b-glucan extracted from barley towards chemically induced DNA damage in rodent cells. Human and Experimental Toxicology, 2006, 25, 319-324.	2.2	11