
Giovanni Battista Tornielli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Grapevine Expression Atlas Reveals a Deep Transcriptome Shift Driving the Entire Plant into a Maturation Program Â. Plant Cell, 2012, 24, 3489-3505.	6.6	371
2	The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine. Plant Physiology, 2015, 167, 1448-1470.	4.8	272
3	Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genomics, 2014, 15, 281.	2.8	221
4	Toward the Analysis of the Petunia MADS Box Gene Family by Reverse and Forward Transposon Insertion Mutagenesis Approaches: B, C, and D Floral Organ Identity Functions Require SEPALLATA-Like MADS Box Genes in Petunia. Plant Cell, 2003, 15, 2680-2693.	6.6	188
5	Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Horticulture Research, 2014, 1, 14016.	6.3	188
6	Stilbene Compounds and Stilbene Synthase Expression during Ripening, Wilting, and UV Treatment in Grape cv. Corvina. Journal of Agricultural and Food Chemistry, 2001, 49, 5531-5536.	5.2	172
7	The plasticity of the grapevine berry transcriptome. Genome Biology, 2013, 14, r54.	8.8	168
8	A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation. DNA Research, 2016, 23, 451-466.	3.4	141
9	Downregulation of the Petunia hybrida α-Expansin Gene PhEXP1 Reduces the Amount of Crystalline Cellulose in Cell Walls and Leads to Phenotypic Changes in Petal Limbs. Plant Cell, 2004, 16, 295-308.	6.6	134
10	The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. Journal of Plant Research, 2016, 129, 513-526.	2.4	134
11	Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant Biology, 2013, 13, 30.	3.6	131
12	Ripening Transcriptomic Program in Red and White Grapevine Varieties Correlates with Berry Skin Anthocyanin Accumulation. Plant Physiology, 2017, 174, 2376-2396.	4.8	121
13	Genome-Wide Analysis of the Expansin Gene Superfamily Reveals Grapevine-Specific Structural and Functional Characteristics. PLoS ONE, 2013, 8, e62206.	2.5	113
14	A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins. Plant Physiology, 2015, 169, pp.01255.2015.	4.8	113
15	De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity. BMC Genomics, 2013, 14, 41.	2.8	110
16	A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis. Frontiers in Plant Science, 2016, 7, 1979.	3.6	110
17	Ethylene Evolution and 1-Aminocyclopropane-1-carboxylate Oxidase Gene Expression during Early Development and Ripening of Peach Fruit. Journal of the American Society for Horticultural Science, 1997, 122, 642-647.	1.0	109
18	Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome. BMC Plant Biology, 2015, 15, 191.	3.6	106

#	Article	IF	CITATIONS
19	A group of grapevine <scp>MYBA</scp> transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared with the berry color locus. Plant Journal, 2017, 91, 220-236.	5.7	103
20	Whole Plant Temperature Manipulation Affects Flavonoid Metabolism and the Transcriptome of Grapevine Berries. Frontiers in Plant Science, 2017, 8, 929.	3.6	102
21	The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. Journal of Experimental Botany, 2016, 67, 5429-5445.	4.8	100
22	Molecular analysis of post-harvest withering in grape by AFLP transcriptional profiling. Journal of Experimental Botany, 2008, 59, 4145-4159.	4.8	86
23	Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine. Plant Physiology, 2018, 178, 1187-1206.	4.8	84
24	Functional Diversification of Grapevine MYB5a and MYB5b in the Control of Flavonoid Biosynthesis in a Petunia Anthocyanin Regulatory Mutant. Plant and Cell Physiology, 2014, 55, 517-534.	3.1	83
25	Disclosing the Molecular Basis of the Postharvest Life of Berry in Different Grapevine Genotypes. Plant Physiology, 2016, 172, 1821-1843.	4.8	75
26	Grapevine field experiments reveal the contribution of genotype, the influence of environment and the effect of their interaction (G×E) on the berry transcriptome. Plant Journal, 2018, 93, 1143-1159.	5.7	75
27	miRVine: a microRNA expression atlas of grapevine based on small RNA sequencing. BMC Genomics, 2015, 16, 393.	2.8	73
28	Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening. BMC Genomics, 2011, 12, 631.	2.8	72
29	Plasticity of the Berry Ripening Program in a White Grape Variety. Frontiers in Plant Science, 2016, 7, 970.	3.6	68
30	Expression ofrolBin tobacco flowers affects the coordinated processes of anther dehiscence and style elongation. Plant Journal, 2004, 38, 512-525.	5.7	59
31	Overexpression of <i>PhEXPA1</i> increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in <i>Petunia hybrida</i> . New Phytologist, 2011, 191, 662-677.	7.3	58
32	The Evolutionary History and Diverse Physiological Roles of the Grapevine Calcium-Dependent Protein Kinase Gene Family. PLoS ONE, 2013, 8, e80818.	2.5	57
33	The <scp>MYB</scp> 5â€driven <scp>MBW</scp> complex recruits a <scp>WRKY</scp> factor to enhance the expression of targets involved in vacuolar hyperâ€acidification and trafficking in grapevine. Plant Journal, 2019, 99, 1220-1241.	5.7	54
34	Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapevine cultivars. Australian Journal of Grape and Wine Research, 2013, 19, 171-179.	2.1	53
35	Effect of various thermo-hygrometric conditions on the withering kinetics of grapes used for the production of "Amarone―and "Recioto―wines. Journal of Food Engineering, 2008, 85, 350-358.	5.2	52
36	Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars. BMC Genomics, 2016, 17, 815.	2.8	49

#	Article	IF	CITATIONS
37	Whole-Metagenome-Sequencing-Based Community Profiles of Vitis vinifera L. cv. Corvina Berries Withered in Two Post-harvest Conditions. Frontiers in Microbiology, 2016, 7, 937.	3.5	47
38	Inspection of the Grapevine BURP Superfamily Highlights an Expansion of RD22 Genes with Distinctive Expression Features in Berry Development and ABA-Mediated Stress Responses. PLoS ONE, 2014, 9, e110372.	2.5	42
39	Revealing impaired pathways in the <i>an11</i> mutant by highâ€throughput characterization of <i>Petunia axillaris</i> and <i>Petunia inflata</i> transcriptomes. Plant Journal, 2011, 68, 11-27.	5.7	35
40	The Induction of Noble Rot (Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega). Frontiers in Plant Science, 2017, 8, 1002.	3.6	34
41	Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65). Transgenic Research, 2003, 12, 203-212.	2.4	31
42	Regeneration of plants from embryogenic callus-derived protoplasts of Garganega and Sangiovese grapevine (Vitis vinifera L.) cultivars. Plant Cell, Tissue and Organ Culture, 2019, 138, 239-246.	2.3	28
43	Selection of candidate genes controlling veraison time in grapevine through integration of meta-QTL and transcriptomic data. BMC Genomics, 2019, 20, 739.	2.8	24
44	Transcriptional Responses to Pre-flowering Leaf Defoliation in Grapevine Berry from Different Growing Sites, Years, and Genotypes. Frontiers in Plant Science, 2017, 8, 630.	3.6	23
45	Specific molecular interactions between Vitis vinifera and Botrytis cinerea are required for noble rot development in grape berries. Postharvest Biology and Technology, 2019, 156, 110924.	6.0	22
46	Rapid dehydration of grape berries dampens the post-ripening transcriptomic program and the metabolite profile evolution. Horticulture Research, 2020, 7, 141.	6.3	21
47	Genetic, epigenetic and genomic effects on variation of gene expression among grape varieties. Plant Journal, 2019, 99, 895-909.	5.7	19
48	The Grape Gene Reference Catalogue as a Standard Resource for Gene Selection and Genetic Improvement. Frontiers in Plant Science, 2021, 12, 803977.	3.6	19
49	VviNAC33 promotes organ deâ€greening and represses vegetative growth during the vegetativeâ€toâ€mature phase transition in grapevine. New Phytologist, 2021, 231, 726-746.	7.3	16
50	Validation by isolation and expression analyses of the mitogen-activated protein kinase gene family in the grapevine (<i>Vitis vinifera</i> â€L.). Australian Journal of Grape and Wine Research, 2014, 20, 255-262.	2.1	14
51	Genomic Designing for Biotic Stress Resistant Grapevine. , 2022, , 87-255.		11
52	PhEXPA1, aPetunia hybridaexpansin, is involved in cell wall metabolism and in plant architecture specification. Plant Signaling and Behavior, 2011, 6, 2031-2034.	2.4	10
53	Transcriptomics and Metabolomics for the Analysis of Grape Berry Development. , 2012, , 218-240.		5
54	Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Botrytis cinerea. Data in Brief, 2019, 25, 104150.	1.0	3

#	Article	IF	CITATIONS
55	Grape Berry Transcriptome. , 2021, , 558-571.		3
56	Towards the definition of a detailed transcriptomic map of berry development. BIO Web of Conferences, 2019, 13, 01001.	0.2	1