Minghui Zheng

List of Publications by Citations

Source: https://exaly.com/author-pdf/129518/minghui-zheng-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

159 papers

3,417 citations

33 h-index

46 g-index

172 ext. papers

4,236 ext. citations

8.9 avg, IF

5.51 L-index

#	Paper	IF	Citations
159	Atmospheric emission of PCDD/Fs, PCBs, hexachlorobenzene, and pentachlorobenzene from the coking industry. <i>Environmental Science & Environmental Scie</i>	10.3	125
158	Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China. <i>Chemosphere</i> , 2009 , 75, 1173-8	8.4	104
157	Sources of unintentionally produced polychlorinated naphthalenes. <i>Chemosphere</i> , 2014 , 94, 1-12	8.4	88
156	Estimation and characterization of polychlorinated naphthalene emission from coking industries. <i>Environmental Science & Environmental Science & Envir</i>	10.3	79
155	Atmospheric emission of polychlorinated biphenyls from multiple industrial thermal processes. <i>Chemosphere</i> , 2013 , 90, 2453-60	8.4	72
154	Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metallurgical facilities in China. <i>Environmental Science & Environmental Science</i>	10.3	71
153	Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China. <i>Chemosphere</i> , 2011 , 85, 1707-12	8.4	65
152	Human Exposure to Short- and Medium-Chain Chlorinated Paraffins via MothersSMilk in Chinese Urban Population. <i>Environmental Science & Environmental S</i>	10.3	64
151	Highly Elevated Levels and Particle-Size Distributions of Environmentally Persistent Free Radicals in Haze-Associated Atmosphere. <i>Environmental Science & Environmental & Environment</i>	10.3	61
150	Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations. <i>Journal of Hazardous Materials</i> , 2015 , 299, 471-8	12.8	55
149	A Novel Method for Profiling and Quantifying Short- and Medium-Chain Chlorinated Paraffins in Environmental Samples Using Comprehensive Two-Dimensional Gas Chromatography-Electron Capture Negative Ionization High-Resolution Time-of-Flight Mass Spectrometry. <i>Environmental</i>	10.3	53
148	Mass Fractions, Congener Group Patterns, and Placental Transfer of Short- and Medium-Chain Chlorinated Paraffins in Paired Maternal and Cord Serum. <i>Environmental Science & Environmental Science & E</i>	10.3	51
147	Pivotal Roles of Metal Oxides in the Formation of Environmentally Persistent Free Radicals. <i>Environmental Science & Environmental Science & Environme</i>	10.3	50
146	Short- and medium-chain chlorinated paraffins in aquatic foods from 18 Chinese provinces: Occurrence, spatial distributions, and risk assessment. <i>Science of the Total Environment</i> , 2018 , 615, 1199)-12d6	48
145	Comparison of PCDD/F levels and profiles in fly ash samples from multiple industrial thermal sources. <i>Chemosphere</i> , 2015 , 133, 68-74	8.4	47
144	Dietary exposure to short- and medium-chain chlorinated paraffins in meat and meat products from 20 provinces of China. <i>Environmental Pollution</i> , 2018 , 233, 439-445	9.3	46
143	Atmospheric emission of polychlorinated naphthalenes from iron ore sintering processes. <i>Chemosphere</i> , 2012 , 89, 467-72	8.4	45

(2009-2017)

142	aromatic hydrocarbons in haze associated atmosphere. <i>Science of the Total Environment</i> , 2017 , 593-594, 390-398	10.2	43
141	Occupational exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorinated biphenyls, and polychlorinated naphthalenes in workplaces of secondary nonferrous metallurgical facilities in China. <i>Environmental Science & Environmental Science </i>	10.3	43
140	Secondary Copper Smelters as Sources of Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons. <i>Environmental Science & Environmental Science & </i>	10.3	42
139	Distributions, profiles and formation mechanisms of polychlorinated naphthalenes in cement kilns co-processing municipal waste incinerator fly ash. <i>Chemosphere</i> , 2016 , 155, 348-357	8.4	41
138	Polychlorinated dibenzo-p-dioxin and dibenzofuran and polychlorinated biphenyl emissions from different smelting stages in secondary copper metallurgy. <i>Chemosphere</i> , 2013 , 90, 89-94	8.4	40
137	Effect of copper chloride on the emissions of PCDD/Fs and PAHs from PVC combustion. <i>Chemosphere</i> , 2002 , 48, 857-63	8.4	40
136	Occurrence and characteristics of polybrominated dibenzo-p-dioxins and dibenzofurans in stack gas emissions from industrial thermal processes. <i>Chemosphere</i> , 2010 , 80, 1227-33	8.4	38
135	Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment. <i>Progress in Energy and Combustion Science</i> , 2020 , 76, 100803	33.6	38
134	Spatial distributions and transport implications of short- and medium-chain chlorinated paraffins in soils and sediments from an e-waste dismantling area in China. <i>Science of the Total Environment</i> , 2019 , 649, 821-828	10.2	37
133	Characterization of short- and medium-chain chlorinated paraffins in outdoor/indoor PM/PM/PM in Beijing, China. <i>Environmental Pollution</i> , 2017 , 225, 674-680	9.3	36
132	Estimation and characterization of PCDD/Fs and dioxin-like PCBs from Chinese iron foundries. <i>Chemosphere</i> , 2011 , 82, 759-63	8.4	36
131	Estimation and characterization of PCDD/Fs and dioxin-like PCB emission from secondary zinc and lead metallurgies in China. <i>Journal of Environmental Monitoring</i> , 2009 , 11, 867-72		36
130	Thermochemical Formation of Polybrominated Dibenzo-p-Dioxins and Dibenzofurans Mediated by Secondary Copper Smelter Fly Ash, and Implications for Emission Reduction. <i>Environmental Science & Emp; Technology</i> , 2016 , 50, 7470-9	10.3	35
129	Inhibition of PCDD/Fs formation from dioxin precursors by calcium oxide. <i>Chemosphere</i> , 2005 , 60, 785-9	9 0 8.4	34
128	Long-Term Temporal Trends of Polychlorinated Biphenyls and Their Controlling Sources in China. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	33
127	Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. <i>Environmental Pollution</i> , 2020 , 265, 114908	9.3	33
126	Characterization of polychlorinated naphthalenes in stack gas emissions from waste incinerators. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 2905-11	5.1	33
125	A preliminary investigation on emission of polychlorinated dibenzo-p-dioxins/dibenzofurans and dioxin-like polychlorinated biphenyls from coke plants in China. <i>Chemosphere</i> , 2009 , 75, 692-695	8.4	33

124	Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes. <i>Journal of Hazardous Materials</i> , 2017 , 331, 63-70	12.8	32
123	Estimation and characterization of unintentionally produced persistent organic pollutant emission from converter steelmaking processes. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 7361-8	5.1	32
122	Short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yangtze River: Spatial distributions, source apportionment and risk assessment. <i>Science of the Total Environment</i> , 2017 , 575, 1177-1182	10.2	32
121	Atmospheric occurrence and health risks of PCDD/Fs, polychlorinated biphenyls, and polychlorinated naphthalenes by air inhalation in metallurgical plants. <i>Science of the Total Environment</i> , 2017 , 580, 1146-1154	10.2	31
120	Congener-specific determination of ultratrace levels of chlorinated and brominated polycyclic aromatic hydrocarbons in atmosphere and industrial stack gas by isotopic dilution gas chromatography/high resolution mass spectrometry method. <i>Journal of Chromatography A</i> , 2017 , 1509, 114-122	4.5	31
119	Molecular Mechanism of Dioxin Formation from Chlorophenol based on Electron Paramagnetic Resonance Spectroscopy. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	31
118	Identification of indicator congeners and evaluation of emission pattern of polychlorinated naphthalenes in industrial stack gas emissions by statistical analyses. <i>Chemosphere</i> , 2015 , 118, 194-200	8.4	31
117	Degradation of polychlorinated biphenyls using mesoporous iron-based spinels. <i>Journal of Hazardous Materials</i> , 2013 , 261, 451-62	12.8	31
116	Characterization of polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorinated biphenyls, and polychlorinated naphthalenes in the environment surrounding secondary copper and aluminum metallurgical facilities in China. <i>Environmental Pollution</i> , 2014 ,	9.3	31
115	193, 6-12 Evaluation of dioxins and dioxin-like compounds from a cement plant using carbide slag from chlor-alkali industry as the major raw material. <i>Journal of Hazardous Materials</i> , 2017 , 330, 135-141	12.8	30
114	Gas-particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze. <i>Environmental Pollution</i> , 2017 , 231, 1601-1608	9.3	30
113	The degradation of 1,2,4-trichlorobenzene using synthesized Co3O4 and the hypothesized mechanism. <i>Journal of Hazardous Materials</i> , 2011 , 192, 1697-704	12.8	30
112	Variations and factors that influence the formation of polychlorinated naphthalenes in cement kilns co-processing solid waste. <i>Journal of Hazardous Materials</i> , 2016 , 315, 117-25	12.8	29
111	Persistent organic pollutants in typical lake ecosystems. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 180, 668-678	7	28
110	Fly ash-mediated formation of polychlorinated naphthalenes during secondary copper smelting and mechanistic aspects. <i>Chemosphere</i> , 2015 , 119, 1091-1098	8.4	28
109	Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons from Metallurgical Plants. <i>Environmental Science & Environmental </i>	10.3	27
108	Thermal degradation of octachloronaphthalene over as-prepared Fe(3)O(4) micro/nanomaterial and its hypothesized mechanism. <i>Environmental Science & Environmental Science & En</i>	10.3	27
107	Identifying iron foundries as a new source of unintentional polychlorinated naphthalenes and characterizing their emission profiles. <i>Environmental Science & Environmental Sc</i>	10.3	27

(2015-2007)

106	Competitive Reaction During Decomposition of Hexachlorobenzene Over Ultrafine Ca E e Composite Oxide Catalysis. <i>Catalysis Letters</i> , 2007 , 119, 142-147	2.8	26
105	Occurrence and Environmental Stability of Aristolochic Acids in Groundwater Collected from Serbia: Links to Human Exposure and Balkan Endemic Nephropathy. <i>Environmental Science & Technology</i> , 2020 , 54, 1554-1561	10.3	26
104	Field study and theoretical evidence for the profiles and underlying mechanisms of PCDD/F formation in cement kilns co-incinerating municipal solid waste and sewage sludge. <i>Waste Management</i> , 2017 , 61, 337-344	8.6	25
103	Characterization of short- and medium-chain chlorinated paraffins in cereals and legumes from 19 Chinese provinces. <i>Chemosphere</i> , 2019 , 226, 282-289	8.4	25
102	Occurrences, sources and risk assessment of short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yellow River, China. <i>Environmental Pollution</i> , 2016 , 219, 483-4	489	25
101	Levels and distributions of polychlorinated naphthalenes in sewage sludge of urban wastewater treatment plants. <i>Science Bulletin</i> , 2008 , 53, 508-513		25
100	The Regular/Persistent Free Radicals and Associated Reaction Mechanism for the Degradation of 1,2,4-Trichlorobenzene over Different MnO Polymorphs. <i>Environmental Science & amp; Technology</i> , 2018 , 52, 13351-13360	10.3	25
99	Gas and particle size distributions of polychlorinated naphthalenes in the atmosphere of Beijing, China. <i>Environmental Pollution</i> , 2016 , 212, 128-134	9.3	24
98	Formation of polychlorinated naphthalenes during the heating of cooking oil in the presence of high amounts of sucralose. <i>Food Control</i> , 2013 , 32, 1-5	6.2	24
97	Emission characteristics of 99 NMVOCs in different seasonal days and the relationship with air quality parameters in Beijing, China. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 169, 797-806	7	23
96	Formation and potential mechanisms of polychlorinated dibenzo-p-dioxins and dibenzofurans on fly ash from a secondary copper smelting process. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 8747-55	5.1	22
95	Concentrations and patterns of polychlorinated biphenyls at different process stages of cement kilns co-processing waste incinerator fly ash. <i>Waste Management</i> , 2016 , 58, 280-286	8.6	22
94	Source identification and quantification of chlorinated and brominated polycyclic aromatic hydrocarbons from cement kilns co-processing solid wastes. <i>Environmental Pollution</i> , 2018 , 242, 1346-1	352	22
93	Comparison of the contributions of polychlorinated dibenzo-p-dioxins and dibenzofurans and other unintentionally produced persistent organic pollutants to the total toxic equivalents in air of steel plant areas. <i>Chemosphere</i> , 2015 , 126, 73-7	8.4	21
92	New classes of organic pollutants in the remote continental environment - Chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau. <i>Environment International</i> , 2020 , 137, 105574	12.9	21
91	Identification and evaluation of chlorinated nonane paraffins in the environment: A persistent organic pollutant candidate for the Stockholm Convention?. <i>Journal of Hazardous Materials</i> , 2019 , 371, 449-455	12.8	20
90	Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene. <i>Chemosphere</i> , 2014 , 99, 216-23	8.4	20
89	Case study of polychlorinated naphthalene emissions and factors influencing emission variations in secondary aluminum production. <i>Journal of Hazardous Materials</i> , 2015 , 286, 545-52	12.8	19

88	Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway. <i>Chemosphere</i> , 2013 , 90, 103-11	8.4	19
87	Insights into the emission reductions of multiple unintentional persistent organic pollutants from industrial activities. <i>Chemosphere</i> , 2016 , 144, 420-4	8.4	18
86	Synthesis of a magnetic micro/nano Fe x O y -CeO2 composite and its application for degradation of hexachlorobenzene. <i>Science China Chemistry</i> , 2010 , 53, 1266-1272	7.9	18
85	Polychlorinated naphthalenes in human milk: Health risk assessment to nursing infants and source analysis. <i>Environment International</i> , 2020 , 136, 105436	12.9	18
84	Identification and characterization of the atmospheric emission of polychlorinated naphthalenes from electric arc furnaces. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 3645-50	5.1	17
83	Mono- to Octachlorinated Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Emissions from Sintering Plants Synergistically Controlled by the Desulfurization Process. <i>Environmental Science & Empirology</i> , 2016 , 50, 5207-15	10.3	17
82	Risk evaluation of environmentally persistent free radicals in airborne particulate matter and influence of atmospheric factors. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 196, 110571	7	16
81	Simultaneous analysis of polychlorinated biphenyls and polychlorinated naphthalenes by isotope dilution comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry. <i>Analytica Chimica Acta</i> , 2016 , 937, 160-7	6.6	16
80	Formation of Polychlorinated Biphenyls on Secondary Copper Production Fly Ash: Mechanistic Aspects and Correlation to Other Persistent Organic Pollutants. <i>Scientific Reports</i> , 2015 , 5, 13903	4.9	16
79	Profiles of polychlorinated biphenyls (PCBs) in cement kilns co-processing solid waste. <i>Chemosphere</i> , 2017 , 174, 165-172	8.4	15
78	Gas chromatography-Orbitrap mass spectrometry screening of organic chemicals in fly ash samples from industrial sources and implications for understanding the formation mechanisms of unintentional persistent organic pollutants. <i>Science of the Total Environment</i> , 2019 , 664, 107-115	10.2	15
77	Thermal Oxidation Degradation of 2,2\$4,4\$Tetrabromodiphenyl Ether over LiTiO Micro/Nanostructures with Dozens of Oxidative Product Analyses and Reaction Mechanisms. <i>Environmental Science & Technology</i> , 2017 , 51, 10059-10071	10.3	15
76	Short- and Medium-Chain Chlorinated Paraffins in Foods from the Sixth Chinese Total Diet Study: Occurrences and Estimates of Dietary Intakes in South China. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 9043-9051	5.7	15
75	Size distribution and sorption of polychlorinated biphenyls during haze episodes. <i>Atmospheric Environment</i> , 2018 , 173, 38-45	5.3	15
74	The combined disposal of 1,2,4-trichlorobenzene and nitrogen oxides using the synthesized Ce0.2TiAl®x micro/nanomaterial. <i>Catalysis Science and Technology</i> , 2015 , 5, 1041-1051	5.5	14
73	Thermal degradation of 2,2\$4,4Stetrabromodiphenyl ether (BDE-47) over synthesized Fe-Al composite oxide. <i>Chemosphere</i> , 2016 , 150, 445-452	8.4	14
72	Unexpected promotion of PCDD/F formation by enzyme-aided Cl bleaching in non-wood pulp and paper mill. <i>Chemosphere</i> , 2017 , 168, 523-528	8.4	13
71	Thermochemical formation of multiple unintentional persistent organic pollutants on metallurgical fly ash and their correlations. <i>Chemosphere</i> , 2019 , 226, 492-501	8.4	13

(2015-2019)

70	Unintentional persistent organic pollutants in cement kilns co-processing solid wastes. Ecotoxicology and Environmental Safety, 2019 , 182, 109373	7	13
69	Polychlorinated naphthalenes in sewage sludge from wastewater treatment plants in China. <i>Science of the Total Environment</i> , 2014 , 490, 555-60	10.2	13
68	Formation and emission of brominated dioxins and furans during secondary aluminum smelting processes. <i>Chemosphere</i> , 2016 , 146, 60-7	8.4	13
67	Particle size distribution and gas-particle partitioning of polychlorinated biphenyls in the atmosphere in Beijing, China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 1389-1396	5.1	12
66	Effect of NiFe2O4 on PCDF byproducts formation during thermal degradation of decachlorobiphenyl. <i>RSC Advances</i> , 2014 , 4, 25453	3.7	12
65	Estimation of Emissions of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans and Dioxin-Like Polychlorinated Biphenyls from Chinese Hot Dip Galvanizing Industries. <i>Environmental Engineering Science</i> , 2011 , 28, 671-676	2	12
64	Particle size distributions and gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in ambient air during haze days and normal days. <i>Science of the Total Environment</i> , 2016 , 573, 876-882	10.2	12
63	Brominated dioxins and furans in a cement kiln co-processing municipal solid waste. <i>Journal of Environmental Sciences</i> , 2019 , 79, 339-345	6.4	12
62	Bioaccessibility of short chain chlorinated paraffins in meat and seafood. <i>Science of the Total Environment</i> , 2019 , 668, 996-1003	10.2	11
61	Inventory of Polychlorinated Naphthalene Emissions from Waste Incineration and Metallurgical Sources in China. <i>Environmental Science & Environmental </i>	10.3	11
60	Environmental characteristics and formations of polybrominated dibenzo-p-dioxins and dibenzofurans. <i>Environment International</i> , 2021 , 152, 106450	12.9	11
59	Thermochemical formation of polychlorinated dibenzo-p-dioxins and dibenzofurans on the fly ash matrix from metal smelting sources. <i>Chemosphere</i> , 2018 , 191, 825-831	8.4	11
58	Identification and preliminary evaluation of polychlorinated naphthalene emissions from hot dip galvanizing plants. <i>Chemosphere</i> , 2015 , 118, 112-6	8.4	10
57	Concentrations and profiles of persistent organic pollutants unintentionally produced by secondary nonferrous metal smelters: Updated emission factors and diagnostic ratios for identifying sources. <i>Chemosphere</i> , 2020 , 255, 126958	8.4	10
56	A comparison of the levels and particle size distribution of lower chlorinated dioxin/furans (monoto tri-chlorinated homologues) with those of tetra- to octa-chlorinated homologues in atmospheric samples. <i>Chemosphere</i> , 2016 , 151, 55-8	8.4	10
55	Removal of polychlorinated naphthalenes by desulfurization and emissions of polychlorinated naphthalenes from sintering plant. <i>Scientific Reports</i> , 2016 , 6, 26444	4.9	10
54	Synthesis of three crystalline forms of Al2O3 featuring rod-like fibers and their effect on the gaseous degradation of 1-chloronaphthalene. <i>Environmental Science: Nano</i> , 2017 , 4, 994-1004	7.1	9
53	Polychlorinated naphthalene concentrations and profiles in cheese and butter, and comparisons with polychlorinated dibenzo-p-dioxin, polychlorinated dibenzofuran and polychlorinated biphenyl concentrations. <i>International Journal of Environmental Analytical Chemistry</i> , 2015 , 95, 203-216	1.8	9

52	Variations of PCDD/Fs emissions from secondary nonferrous smelting plants and towards to their source emission reduction. <i>Environmental Pollution</i> , 2020 , 260, 113946	9.3	9
51	Determination of Aristolochic Acids in Vegetables: Nephrotoxic and Carcinogenic Environmental Pollutants Contaminating a Broad Swath of the Food Supply and Driving Incidence of Balkan Endemic Nephropathy. <i>Chemical Research in Toxicology</i> , 2020 , 33, 2446-2454	4	9
50	Synergetic inhibition of PCDD/F formation from pentachlorophenol by mixtures of urea and calcium oxide. <i>Journal of Hazardous Materials</i> , 2016 , 317, 394-402	12.8	9
49	A novel computational solution to the health risk assessment of air pollution via joint toxicity prediction: A case study on selected PAH binary mixtures in particulate matters. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 170, 427-435	7	9
48	Fatty acids, polychlorinated dibenzo-p-dioxins and dibenzofurans, and dioxin-like polychlorinated biphenyls in paired muscle and skin from fish from the Bohai coast, China: Benefits and risks associated with fish consumption. <i>Science of the Total Environment</i> , 2018 , 639, 952-960	10.2	9
47	Concentrations of and risks posed by short-chain and medium-chain chlorinated paraffins in soil at a chemical industrial park on the southeast coast of China. <i>Environmental Pollution</i> , 2020 , 258, 113704	9.3	8
46	Nontarget Screening of Polycyclic Aromatic Compounds in Atmospheric Particulate Matter Using Ultrahigh Resolution Mass Spectrometry and Comprehensive Two-Dimensional Gas Chromatography. <i>Environmental Science & Environmental Science & Environment</i>	10.3	8
45	Spatial distributions and homolog profiles of chlorinated nonane paraffins, and short and medium chain chlorinated paraffins in soils from Yunnan, China. <i>Chemosphere</i> , 2020 , 247, 125855	8.4	7
44	Thermal degradation of polybrominated diphenyl ethers over as-prepared Fe3O4 micro/nano-material and hypothesized mechanism. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 1540-51	5.1	7
43	Determination of hexabromocyclododecanes in sediments from the Haihe River in China by an optimized HPLC-MS-MS method. <i>Journal of Environmental Sciences</i> , 2017 , 55, 174-183	6.4	7
42	Non-target screening of organic pollutants and target analysis of halogenated polycyclic aromatic hydrocarbons in the atmosphere around metallurgical plants by high-resolution GC/Q-TOF-MS. <i>Environmental Sciences Europe</i> , 2020 , 32,	5	7
41	Assessment of personal exposure to environmentally persistent free radicals in airborne particulate matter. <i>Journal of Hazardous Materials</i> , 2021 , 409, 125014	12.8	7
40	Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism. <i>Scientific Reports</i> , 2015 , 5, 17800	4.9	6
39	Thermal dechlorination of PCB-209 over Ca species-doped FeD Chemosphere, 2016 , 144, 81-90	8.4	6
38	Levels and characteristics of polychlorinated biphenyls in surface sediments of the Chaobai river, a source of drinking water for Beijing, China. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 189, 109922	7	6
37	Polychlorinated naphthalene (PCN) emissions and characteristics during different secondary copper smelting stages. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 184, 109674	7	5
36	Photochemical conversion of toluene in simulated atmospheric matrix and characterization of large molecular weight products by +APPI FT-ICR MS. <i>Science of the Total Environment</i> , 2019 , 649, 111-119	10.2	5
35	Polychlorinated Naphthalene Congener Profiles in Common Vegetation on the Tibetan Plateau as Biomonitors of Their Sources and Transportation. <i>Environmental Science & Environmental Science & Environ</i>	10.3	4

(2021-2021)

34	Formation of Environmentally Persistent Free Radicals during Thermochemical Processes and their Correlations with Unintentional Persistent Organic Pollutants. <i>Environmental Science & Environmental </i>	10.3	4
33	Formation of environmentally persistent free radicals from thermochemical reactions of catechol. <i>Science of the Total Environment</i> , 2021 , 772, 145313	10.2	4
32	Factors that affect polychlorinated naphthalenes formation and distribution during the heating of sucralose. <i>Food Chemistry</i> , 2019 , 276, 397-401	8.5	4
31	Photoinduced formation of persistent free radicals, hydrogen radicals, and hydroxyl radicals from catechol on atmospheric particulate matter. <i>IScience</i> , 2021 , 24, 102193	6.1	4
30	Degradation of one-side fully-chlorinated 1,2,3,4-tetrachloronaphthalene over FeAl composite oxides and its hypothesized reaction mechanism. <i>RSC Advances</i> , 2017 , 7, 17577-17585	3.7	3
29	Sustainable superior function of the synthesized NiCoFeO nanosphere on the destruction of chlorinated biphenyls in the effluent. <i>Journal of Hazardous Materials</i> , 2018 , 344, 64-72	12.8	3
28	Investigation of the decomposition mechanism of hexachlorobenzene on gamma-Al2O3. <i>Environmental Technology (United Kingdom)</i> , 2012 , 33, 1945-51	2.6	3
27	Burden and Risk of Polychlorinated Naphthalenes in Chinese Human Milk and a Global Comparison of Human Exposure. <i>Environmental Science & Environmental & Envi</i>	10.3	3
26	Hexachlorobutadiene emissions from typical chemical plants. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	3
25	Occurrence, profiles, and control of unintentional POPs in the steelmaking industry: A review. <i>Science of the Total Environment</i> , 2021 , 773, 145692	10.2	2
24	Recognition of the molecular characterization and mechanisms of heterogeneously formed organic pollutants from metallurgical industries by FT-ICR-MS and GC/Q-TOF-MS. <i>Journal of Hazardous Materials</i> , 2021 , 406, 124603	12.8	2
23	Characterizing the emissions of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from electric arc furnaces during steel-making. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 1117	7 2	2
22	Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. <i>Environmental Chemistry for A Sustainable World</i> , 2021 , 1-111	0.8	2
21	Occurrences, congener group profiles, and risk assessment of short- and medium-chain chlorinated paraffins in cup instant noodles from China. <i>Chemosphere</i> , 2021 , 279, 130503	8.4	2
20	Critical influences of metal compounds on the formation and stabilization of environmentally persistent free radicals. <i>Chemical Engineering Journal</i> , 2022 , 427, 131666	14.7	2
19	Worldwide cases of water pollution by emerging contaminants: a review. <i>Environmental Chemistry Letters</i> ,1	13.3	2
18	Concentrations, homolog profiles, and risk assessment of short- and medium-chain chlorinated paraffins in soil around factories in a non-ferrous metal recycling park. <i>Environmental Pollution</i> , 2021 , 293, 118456	9.3	1
17	Insights into the Formation and Profile of Chlorinated Polycyclic Aromatic Hydrocarbons during Chlorobenzene and Chloroethylene Manufacturing Processes. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 15929-15939	10.3	1

16	Identification of emerging organic pollutants from solid waste incinerations by FT-ICR-MS and GC/Q-TOF-MS and their potential toxicities <i>Journal of Hazardous Materials</i> , 2022 , 428, 128220	12.8	1
15	Highly elevated levels, infant dietary exposure and health risks of medium-chain chlorinated paraffins in breast milk from China: Comparison with short-chain chlorinated paraffins. <i>Environmental Pollution</i> , 2021 , 279, 116922	9.3	1
14	Polychlorinated Biphenyl Emissions from Steelmaking Electric Arc Furnaces. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2021 , 106, 670-675	2.7	1
13	Bridging the Energy Benefit and POPs Emission Risk from Waste Incineration. <i>Innovation(China)</i> , 2021 , 2, 100075	17.8	1
12	Profiles, spatial distributions and inventory of brominated dioxin and furan emissions from secondary nonferrous smelting industries in China. <i>Journal of Hazardous Materials</i> , 2021 , 419, 126415	12.8	1
11	Congener profiles and process distributions of polychlorinated biphenyls, polychlorinated naphthalenes and chlorinated polycyclic aromatic hydrocarbons from secondary copper smelting. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127125	12.8	1
10	Source identification, contamination status and health risk assessment of heavy metals from road dusts in Dhaka, Bangladesh. <i>Journal of Environmental Sciences</i> , 2022 , 121, 159-174	6.4	0
9	Model framework to quantify the effectiveness of garbage classification in reducing dioxin emissions. <i>Science of the Total Environment</i> , 2021 , 151941	10.2	O
8	Occurrence of chlorinated and brominated polycyclic aromatic hydrocarbons from electric arc furnace for steelmaking <i>Environmental Pollution</i> , 2021 , 294, 118663	9.3	0
7	Organic pollutants from electric arc furnaces in steelmaking: a review. <i>Environmental Chemistry Letters</i> , 2021 , 19, 1509-1523	13.3	0
6	Resurgence of Sandstorms Complicates China's Air Pollution Situation. <i>Environmental Science & Environmental Science</i>	10.3	0
5	Exposure to Chlorinated Paraffins in the Sixth Total Diet Study China, 2016-2019 <i>China CDC Weekly</i> , 2022 , 4, 172-175	4	O
4	Method development for determination of polyhalogenated carbazoles in industrial waste through gas chromatography-triple quadrupole tandem mass spectrometry <i>Rapid Communications in Mass Spectrometry</i> , 2022 , e9324	2.2	О
3	Response to Comment on "Molecular Mechanism of Dioxin Formation from Chlorophenol based on Electron Paramagnetic Resonance Spectroscopy". <i>Environmental Science & Environmental Science & Environment</i>	10.3	
2	Synergetic promoting/inhibiting mechanisms of copper/calcium compounds in the formation of persistent organic pollutants and environmentally persistent free radicals from anthracene. <i>Chemical Engineering Journal</i> , 2022 , 441, 136102	14.7	
1	Discovery of significant atmospheric emission of halogenated polycyclic aromatic hydrocarbons from secondary zinc smelting <i>Ecotoxicology and Environmental Safety</i> , 2022 , 238, 113594	7	