
Wolfgang Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1295070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sensing of Environment, 1999, 70, 191-207.	11.0	1,032
2	The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrology and Earth System Sciences, 2011, 15, 1675-1698.	4.9	864
3	ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 2017, 203, 185-215.	11.0	781
4	Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sensing of Environment, 2012, 123, 280-297.	11.0	670
5	Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60, 100-112.	11.1	581
6	Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrology and Earth System Sciences, 2011, 15, 425-436.	4.9	572
7	Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sensing of Environment, 2011, 115, 3390-3408.	11.0	483
8	The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorologische Zeitschrift, 2013, 22, 5-33.	1.0	471
9	Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sensing of Environment, 2012, 118, 215-226.	11.0	444
10	Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sensing of Environment, 2015, 162, 380-395.	11.0	443
11	Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrology Research, 2007, 38, 1-20.	2.7	395
12	Initial soil moisture retrievals from the METOPâ€A Advanced Scatterometer (ASCAT). Geophysical Research Letters, 2007, 34, .	4.0	387
13	An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 1999-2013.	6.3	356
14	The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables. Bulletin of the American Meteorological Society, 2013, 94, 1541-1552.	3.3	355
15	Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network. Vadose Zone Journal, 2013, 12, 1-21.	2.2	346
16	Error characterisation of global active and passive microwave soil moisture datasets. Hydrology and Earth System Sciences, 2010, 14, 2605-2616.	4.9	332
17	Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth System Science Data, 2019, 11, 717-739.	9.9	331
18	Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrology and Earth System Sciences, 2010, 14, 1881-1893.	4.9	320

#	Article	IF	CITATIONS
19	The future of Earth observation in hydrology. Hydrology and Earth System Sciences, 2017, 21, 3879-3914.	4.9	313
20	Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers. Surveys in Geophysics, 2008, 29, 399-420.	4.6	311
21	Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5128-5141.	3.3	308
22	On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar. Sensors, 2008, 8, 4213-4248.	3.8	272
23	Evaluating global trends (1988–2010) in harmonized multiâ€satellite surface soil moisture. Geophysical Research Letters, 2012, 39, .	4.0	268
24	Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. Journal of Geophysical Research, 2003, 108, .	3.3	265
25	Soil moisture from operational meteorological satellites. Hydrogeology Journal, 2007, 15, 121-131.	2.1	258
26	A possible solution for the problem of estimating the error structure of global soil moisture data sets. Geophysical Research Letters, 2008, 35, .	4.0	244
27	Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 6780-6792.	6.3	243
28	Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 520-539.	6.3	241
29	Assimilation of Surface- and Root-Zone ASCAT Soil Moisture Products Into Rainfall–Runoff Modeling. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 2542-2555.	6.3	224
30	Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sensing, 2018, 10, 1396.	4.0	219
31	A study of vegetation cover effects on ERS scatterometer data. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37, 938-948.	6.3	216
32	Recent advances in (soil moisture) triple collocation analysis. International Journal of Applied Earth Observation and Geoinformation, 2016, 45, 200-211.	2.8	207
33	Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing. Journal of Hydrometeorology, 2013, 14, 1259-1277.	1.9	205
34	ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy. Remote Sensing of Environment, 2010, 114, 2745-2755.	11.0	204
35	Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Applied Geography, 2007, 27, 42-62.	3.7	194
36	Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65, 505-513.	11.1	190

#	Article	IF	CITATIONS
37	FUSION OF ACTIVE AND PASSIVE MICROWAVE OBSERVATIONS TO CREATE AN ESSENTIAL CLIMATE VARIABLE DATA RECORD ON SOIL MOISTURE. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, I-7, 315-321.	0.0	189
38	An Intercomparison of ERS-Scat and AMSR-E Soil Moisture Observations with Model Simulations over France. Journal of Hydrometeorology, 2009, 10, 431-447.	1.9	187
39	A new method for rainfall estimation through soil moisture observations. Geophysical Research Letters, 2013, 40, 853-858.	4.0	187
40	3D vegetation mapping using smallâ€footprint fullâ€waveform airborne laser scanners. International Journal of Remote Sensing, 2008, 29, 1433-1452.	2.9	184
41	Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydrological Processes, 2005, 19, 1549-1566.	2.6	172
42	Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site. Hydrology and Earth System Sciences, 2010, 14, 141-156.	4.9	172
43	Using ENVISAT ASAR Global Mode Data for Surface Soil Moisture Retrieval Over Oklahoma, USA. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 468-480.	6.3	165
44	Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sensing of Environment, 2013, 137, 288-298.	11.0	165
45	Validation practices for satellite soil moisture retrievals: What are (the) errors?. Remote Sensing of Environment, 2020, 244, 111806.	11.0	164
46	Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sensing of Environment, 2014, 152, 614-626.	11.0	160
47	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	3.3	160
48	Assimilation of a ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system. Advances in Water Resources, 2008, 31, 1101-1112.	3.8	153
49	Flood detection from multi-temporal SAR data using harmonic analysis and change detection. International Journal of Applied Earth Observation and Geoinformation, 2015, 38, 15-24.	2.8	153
50	Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 2018, 204, 260-275.	11.0	147
51	Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrology and Earth System Sciences, 2006, 10, 353-368.	4.9	142
52	Toward Global Drought Early Warning Capability: Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting. Bulletin of the American Meteorological Society, 2013, 94, 776-785.	3.3	142
53	State of the Climate in 2015. Bulletin of the American Meteorological Society, 2016, 97, Si-S275.	3.3	142
54	Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote Sensing Letters, 2016, 7, 1209-1218.	1.4	140

#	Article	IF	CITATIONS
55	SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT soil moisture observations. Earth System Science Data, 2019, 11, 1583-1601.	9.9	140
56	State of the Climate in 2013. Bulletin of the American Meteorological Society, 2014, 95, S1-S279.	3.3	138
57	A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements. Remote Sensing of Environment, 2021, 252, 112162.	11.0	138
58	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	3.3	135
59	Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37, 206-216.	6.3	132
60	State of the Climate in 2016. Bulletin of the American Meteorological Society, 2017, 98, Si-S280.	3.3	132
61	State of the Climate in 2012. Bulletin of the American Meteorological Society, 2013, 94, S1-S258.	3.3	129
62	State of the Climate in 2011. Bulletin of the American Meteorological Society, 2012, 93, S1-S282.	3.3	121
63	Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data. Remote Sensing of Environment, 2003, 85, 125-144.	11.0	120
64	Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France. Hydrology and Earth System Sciences, 2011, 15, 3829-3841.	4.9	119
65	The International Soil Moisture Network: serving Earth system science for over a decade. Hydrology and Earth System Sciences, 2021, 25, 5749-5804.	4.9	116
66	Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1303-1311.	4.9	114
67	Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60, 323-338.	11.1	112
68	Inter-comparison of microwave satellite soil moisture retrievals over the Murrumbidgee Basin, southeast Australia. Remote Sensing of Environment, 2013, 134, 1-11.	11.0	112
69	Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR). Sensors, 2008, 8, 1174-1197.	3.8	112
70	Joint Sentinelâ€1 and SMAP data assimilation to improve soil moisture estimates. Geophysical Research Letters, 2017, 44, 6145-6153.	4.0	111
71	Characterizing Coarseâ€5cale Representativeness of in situ Soil Moisture Measurements from the International Soil Moisture Network. Vadose Zone Journal, 2013, 12, 1-16.	2.2	109
72	Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote Sensing of Environment, 2010, 114, 941-949.	11.0	102

#	Article	IF	CITATIONS
73	Error Estimates for Near-Real-Time Satellite Soil Moisture as Derived From the Land Parameter Retrieval Model. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 779-783.	3.1	102
74	A Review of the Applications of ASCAT Soil Moisture Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2285-2306.	4.9	101
75	SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture. Earth System Science Data, 2018, 10, 267-280.	9.9	101
76	Uncertainty information in climate data records from Earth observation. Earth System Science Data, 2017, 9, 511-527.	9.9	100
77	Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment. Sensors, 2007, 7, 1559-1577.	3.8	98
78	Temporal and spatial variability of the beginning and end of daily spring freeze/thaw cycles derived from scatterometer data. Remote Sensing of Environment, 2007, 106, 360-374.	11.0	98
79	Large-scale soil moisture mapping in western Africa using the ERS scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38, 1777-1782.	6.3	97
80	ASCAT Surface State Flag (SSF): Extracting Information on Surface Freeze/Thaw Conditions From Backscatter Data Using an Empirical Threshold-Analysis Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 2566-2582.	6.3	97
81	Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France. Hydrology and Earth System Sciences, 2010, 14, 2177-2191.	4.9	95
82	Structural and statistical properties of the collocation technique for error characterization. Nonlinear Processes in Geophysics, 2012, 19, 69-80.	1.3	95
83	Initial soil moisture effects on flash flood generation – A comparison between basins of contrasting hydro-climatic conditions. Journal of Hydrology, 2016, 541, 206-217.	5.4	94
84	National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series. Remote Sensing of Environment, 2021, 252, 112128.	11.0	93
85	Detecting unknown coal fires: synergy of automated coal fire risk area delineation and improved thermal anomaly extraction. International Journal of Remote Sensing, 2007, 28, 4561-4585.	2.9	91
86	Improving Landslide Forecasting Using ASCAT-Derived Soil Moisture Data: A Case Study of the Torgiovannetto Landslide in Central Italy. Remote Sensing, 2012, 4, 1232-1244.	4.0	91
87	Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR). Sensors, 2008, 8, 1174-1197.	3.8	88
88	Validation of the ASCAT Soil Water Index using in situ data from the International Soil Moisture Network. International Journal of Applied Earth Observation and Geoinformation, 2014, 30, 1-8.	2.8	84
89	Detecting coal fires using remote sensing techniques. International Journal of Remote Sensing, 2004, 25, 3193-3220.	2.9	82
90	Soil moisture-runoff relation at the catchment scale as observed with coarse resolution microwave remote sensing. Hydrology and Earth System Sciences, 2005, 9, 173-183.	4.9	82

#	Article	IF	CITATIONS
91	Estimating error crossâ€correlations in soil moisture data sets using extended collocation analysis. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1208-1219.	3.3	80
92	Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses. Remote Sensing of Environment, 2013, 138, 77-89.	11.0	79
93	Evaluation of ERS scatterometer soil moisture products over a half-degree region in southwestern France. Geophysical Research Letters, 2006, 33, .	4.0	78
94	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 96, ES1-ES32.	3.3	78
95	The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory. Hydrology and Earth System Sciences, 2016, 20, 227-255.	4.9	77
96	A Review of Irrigation Information Retrievals from Space and Their Utility for Users. Remote Sensing, 2021, 13, 4112.	4.0	76
97	Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data. Remote Sensing, 2015, 7, 15868-15893.	4.0	74
98	Identifying Land Use/Cover Dynamics in the Koga Catchment, Ethiopia, from Multi-Scale Data, and Implications for Environmental Change. ISPRS International Journal of Geo-Information, 2013, 2, 302-323.	2.9	73
99	Comparing soil moisture retrievals from SMOS and ASCAT over France. Hydrology and Earth System Sciences, 2012, 16, 423-440.	4.9	72
100	ASCAT Soil Moisture: An Assessment of the Data Quality and Consistency with the ERS Scatterometer Heritage. Journal of Hydrometeorology, 2009, 10, 555-563.	1.9	71
101	Soil Moisture from Fusion of Scatterometer and SAR: Closing the Scale Gap with Temporal Filtering. Remote Sensing, 2018, 10, 1030.	4.0	71
102	Integrating earth observation and GIScience for high resolution spatial and functional modeling of urban land use. Computers, Environment and Urban Systems, 2009, 33, 15-25.	7.1	69
103	Preface "Observing and modeling the catchment scale water cycle". Hydrology and Earth System Sciences, 2011, 15, 597-601.	4.9	69
104	Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 3513-3531.	6.3	66
105	Satellite-based terrestrial production efficiency modeling. Carbon Balance and Management, 2009, 4, 8.	3.2	65
106	Optimisation of global grids for high-resolution remote sensing data. Computers and Geosciences, 2014, 72, 84-93.	4.2	65
107	Can ASCAT-derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an assimilation application. Advances in Water Resources, 2012, 44, 49-65.	3.8	63
108	Global scale error assessments of soil moisture estimates from microwave-based active and passive satellites and land surface models over forest and mixed irrigated/dryland agriculture regions. Remote Sensing of Environment, 2020, 251, 112052.	11.0	63

#	Article	IF	CITATIONS
109	Rainfall-runoff modelling by using SM2RAIN-derived and state-of-the-art satellite rainfall products over Italy. International Journal of Applied Earth Observation and Geoinformation, 2016, 48, 163-173.	2.8	62
110	Catchment scale validation of SMOS and ASCAT soil moisture products using hydrological modeling and temporal stability analysis. Journal of Hydrology, 2014, 519, 934-946.	5.4	59
111	European Rice Cropland Mapping with Sentinel-1 Data: The Mediterranean Region Case Study. Water (Switzerland), 2017, 9, 392.	2.7	58
112	Azimuthal anisotropy of scatterometer measurements over land. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 2083-2092.	6.3	57
113	Top quark physics in hadron collisions. Reports on Progress in Physics, 2005, 68, 2409-2494.	20.1	56
114	The potential of multidiurnal MODIS thermal band data for coal fire detection. International Journal of Remote Sensing, 2008, 29, 923-944.	2.9	56
115	Enhanced Automated Canopy Characterization from Hyperspectral Data by a Novel Two Step Radiative Transfer Model Inversion Approach. Remote Sensing, 2009, 1, 1139-1170.	4.0	56
116	Growing stock estimation for alpine forests in Austria: a robust lidar-based approach. Canadian Journal of Forest Research, 2009, 39, 1387-1400.	1.7	56
117	Integration of Satellite Soil Moisture and Rainfall Observations over the Italian Territory. Journal of Hydrometeorology, 2015, 16, 1341-1355.	1.9	56
118	Global monitoring of wetlands – the value of ENVISAT ASAR Global mode. Journal of Environmental Management, 2009, 90, 2226-2233.	7.8	55
119	Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. International Journal of Climatology, 2020, 40, 5941-5958.	3.5	55
120	A New International Network for in Situ Soil Moisture Data. Eos, 2011, 92, 141-142.	0.1	54
121	Change detection approaches for flood extent mapping: How to select the most adequate reference image from online archives?. International Journal of Applied Earth Observation and Geoinformation, 2012, 19, 205-213.	2.8	51
122	Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia. Remote Sensing of Environment, 2012, 120, 188-196.	11.0	51
123	Assimilation of Sentinel 1 and SMAP–Âbased satellite soil moisture retrievals into SWAT hydrological model: the impact of satellite revisit time andÂproduct spatial resolution on flood simulations in small basins. Journal of Hydrology, 2020, 581, 124367.	5.4	51
124	Annual seasonality in Sentinel-1 signal for forest mapping and forest type classification. International Journal of Remote Sensing, 2018, 39, 7738-7760.	2.9	50
125	Monitoring freeze/thaw cycles using ENVISAT ASAR Global Mode. Remote Sensing of Environment, 2011, 115, 3457-3467.	11.0	49
126	A Combined Satellite-Derived Drought Indicator to Support Humanitarian Aid Organizations. Remote Sensing, 2016, 8, 340.	4.0	48

#	Article	IF	CITATIONS
127	Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data. International Journal of Remote Sensing, 2009, 30, 5159-5175.	2.9	46
128	On the potential of MetOp ASCATâ€derived soil wetness indices as a new aperture for hydrological monitoring and prediction: a field evaluation over Luxembourg. Hydrological Processes, 2012, 26, 2346-2359.	2.6	46
129	Mapping Wetlands in Zambia Using Seasonal Backscatter Signatures Derived from ENVISAT ASAR Time Series. Remote Sensing, 2016, 8, 402.	4.0	46
130	An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia. Remote Sensing of Environment, 2015, 160, 166-179.	11.0	44
131	Thermal characteristics of coal fires 2: Results of measurements on simulated coal fires. Journal of Applied Geophysics, 2007, 63, 135-147.	2.1	41
132	The Role of Organizational Processes in Dissemination and Implementation Research. , 2012, , 128-153.		41
133	Validation of the ASAR Global Monitoring Mode Soil Moisture Product Using the NAFE'05 Data Set. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 2498-2508.	6.3	40
134	Hydrologic resilience of the terrestrial biosphere. Geophysical Research Letters, 2005, 32, .	4.0	38
135	Editorial "Remote sensing in hydrological sciences". Hydrology and Earth System Sciences, 2009, 13, 813-817.	4.9	38
136	Soil moisture mapping in a semiarid region, based on ASAR/Wide Swath satellite data. Water Resources Research, 2014, 50, 823-835.	4.2	38
137	Scatterometer-Derived Soil Moisture Calibrated for Soil Texture With a One-Dimensional Water-Flow Model. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 4041-4049.	6.3	37
138	Detection of permanent open water surfaces in central Siberia with ENVISAT ASAR wide swath data with special emphasis on the estimation of methane fluxes from tundra wetlands. Hydrology Research, 2008, 39, 89-100.	2.7	36
139	Comparison of soil moisture fields estimated by catchment modelling and remote sensing: a case study in South Africa. Hydrology and Earth System Sciences, 2008, 12, 751-767.	4.9	36
140	Methods to Remove the Border Noise From Sentinel-1 Synthetic Aperture Radar Data: Implications and Importance For Time-Series Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 777-786.	4.9	36
141	Roughness Mapping on Various Vertical Scales Based on Full-Waveform Airborne Laser Scanning Data. Remote Sensing, 2011, 3, 503-523.	4.0	35
142	Clarifications on the "Comparison Between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four Watersheds in U.S.― IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 1901-1906.	6.3	35
143	Scientific Developments and the EPS-SG Scatterometer. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2086-2097.	4.9	35
144	Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe. Remote Sensing, 2020, 12, 3404.	4.0	35

#	Article	IF	CITATIONS
145	A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine. Remote Sensing, 2021, 13, 2099.	4.0	35
146	Calibration of full-waveform airborne laser scanning data for object classification. Proceedings of SPIE, 2008, , .	0.8	34
147	RADIOMETRIC CALIBRATION OF MULTI-WAVELENGTH AIRBORNE LASER SCANNING DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, I-7, 335-340.	0.0	34
148	Classification of forest volume resources using ERS tandem coherence and JERS backscatter data. International Journal of Remote Sensing, 2004, 25, 751-768.	2.9	33
149	The Use of H-SAF Soil Moisture Products for Operational Hydrology: Flood Modelling over Italy. Hydrology, 2015, 2, 2-22.	3.0	33
150	Root-zone plant available water estimation using the SMOS-derived soil water index. Advances in Water Resources, 2016, 96, 339-353.	3.8	33
151	A Comparison of Terrain Indices toward Their Ability in Assisting Surface Water Mapping from Sentinel-1 Data. ISPRS International Journal of Geo-Information, 2017, 6, 140.	2.9	33
152	Accuracy assessment of a large-scale forest cover map of central Siberia from synthetic aperture radar. Canadian Journal of Remote Sensing, 2002, 28, 719-737.	2.4	32
153	Development of a Global Backscatter Model in support to the Sentinel-1 mission design. Remote Sensing of Environment, 2012, 120, 102-112.	11.0	32
154	The openEO API–Harmonising the Use of Earth Observation Cloud Services Using Virtual Data Cube Functionalities. Remote Sensing, 2021, 13, 1125.	4.0	32
155	Evaluation of satellite soil moisture products over Norway using ground-based observations. International Journal of Applied Earth Observation and Geoinformation, 2016, 45, 155-164.	2.8	31
156	European Wide Forest Classification Based on Sentinel-1 Data. Remote Sensing, 2021, 13, 337.	4.0	31
157	Closing the Water Cycle from Observations across Scales: Where Do We Stand?. Bulletin of the American Meteorological Society, 2021, 102, E1897-E1935.	3.3	31
158	The normalised Sentinel-1 Global Backscatter Model, mapping Earth's land surface with C-band microwaves. Scientific Data, 2021, 8, 277.	5.3	30
159	Status and prospects of top-quark physics. Progress in Particle and Nuclear Physics, 2009, 63, 239-292.	14.4	29
160	Analysis of C-Band Scatterometer Moisture Estimations Derived Over a Semiarid Region. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 2630-2638.	6.3	29
161	Frozen Soil Detection Based on Advanced Scatterometer Observations and Air Temperature Data as Part of Soil Moisture Retrieval. Remote Sensing, 2015, 7, 3206-3231.	4.0	29
162	Total canopy transmittance estimated from small-footprint, full-waveform airborne LiDAR. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128, 61-72.	11.1	29

#	Article	IF	CITATIONS
163	Relationship between soil moisture and vegetation in the Kairouan plain region of Tunisia using low spatial resolution satellite data. Water Resources Research, 2010, 46, .	4.2	28
164	Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 47-57.	2.8	28
165	Capability evaluation of 3–5 µm and 8–12.5 µm airborne thermal data for underground coal fire detection. International Journal of Remote Sensing, 2004, 25, 2245-2258.	2.9	27
166	How Oceanic Oscillation Drives Soil Moisture Variations over Mainland Australia: An Analysis of 32 Years of Satellite Observations*. Journal of Climate, 2013, 26, 10159-10173.	3.2	27
167	Impact of ASCAT Soil Moisture Assimilation on Regional Precipitation Forecasts: A Case Study for Austria. Monthly Weather Review, 2014, 142, 1525-1541.	1.4	27
168	The potential of 2D Kalman filtering for soil moisture data assimilation. Remote Sensing of Environment, 2015, 171, 137-148.	11.0	27
169	Use of Satellite Soil Moisture Products for the Operational Mitigation of Landslides Risk in Central Italy. , 2016, , 231-247.		27
170	Assessing Vegetation Dynamics Over Mainland Australia With Metop ASCAT. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2240-2248.	4.9	27
171	Soil Moisture Estimation in Alpine Catchments through Modeling and Satellite Observations. Vadose Zone Journal, 2013, 12, 1-10.	2.2	25
172	Suitability of SAR imagery for automatic flood mapping in the Lower Mekong Basin. International Journal of Remote Sensing, 2014, 35, 2857-2874.	2.9	25
173	Triple Collocation Analysis of Soil Moisture From Metop-A ASCAT and SMOS Against JRA-55 and ERA-Interim. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2274-2284.	4.9	25
174	The value of ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual hydrologic model. Hydrology and Earth System Sciences, 2021, 25, 1389-1410.	4.9	25
175	Regularizing method for the determination of the backscatter cross section in lidar data. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 1071.	1.5	24
176	Deâ€noising of passive and active microwave satellite soil moisture time series. Geophysical Research Letters, 2013, 40, 3624-3630.	4.0	24
177	Probabilistic Fusion of \$hbox{K}_{m u}\$- and C-band Scatterometer Data for Determining the Freeze/Thaw State. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 2583-2594.	6.3	23
178	Evaluation of Soil Moisture Retrieval from the ERS and Metop Scatterometers in the Lower Mekong Basin. Remote Sensing, 2013, 5, 1603-1623.	4.0	23
179	Seven Years of Advanced Synthetic Aperture Radar (ASAR) Global Monitoring (GM) of Surface Soil Moisture over Africa. Remote Sensing, 2014, 6, 7683-7707.	4.0	23
180	Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using Metop ASCAT. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2348-2359.	4.9	23

#	Article	IF	CITATIONS
181	Satellite radar imagery for monitoring inland wetlands in boreal and sub-arctic environments. Aquatic Conservation: Marine and Freshwater Ecosystems, 2007, 17, 305-317.	2.0	22
182	Evaluation of the ERS Scatterometer-Derived Soil Water Index to Monitor Water Availability and Precipitation Distribution at Three Different Scales in China. Journal of Hydrometeorology, 2008, 9, 549-562.	1.9	22
183	Combining satellite observations to develop a global soil moisture product for near-real-time applications. Hydrology and Earth System Sciences, 2016, 20, 4191-4208.	4.9	22
184	Error decomposition of nine passive and active microwave satellite soil moisture data sets over Australia. Remote Sensing of Environment, 2016, 182, 128-140.	11.0	22
185	The global soil moisture archive 1992-2000 from ERS scatterometer data: first results. , 0, , .		21
186	Promoting interdisciplinary education â^' the Vienna Doctoral Programme on Water Resource Systems. Hydrology and Earth System Sciences, 2012, 16, 457-472.	4.9	21
187	Scaling and Filtering Approaches for the Use of Satellite Soil Moisture Observations. , 2013, , 411-426.		21
188	Evaluation of post-retrieval de-noising of active and passive microwave satellite soil moisture. Remote Sensing of Environment, 2015, 163, 127-139.	11.0	21
189	A Generic First-Order Radiative Transfer Modelling Approach for the Inversion of Soil and Vegetation Parameters from Scatterometer Observations. Remote Sensing, 2019, 11, 285.	4.0	21
190	The Impact of Radar Incidence Angle on Soil-Moisture-Retrieval Skill. IEEE Geoscience and Remote Sensing Letters, 2010, 7, 501-505.	3.1	20
191	An application-oriented automated approach for co-registration of forest inventory and airborne laser scanning data. International Journal of Remote Sensing, 2010, 31, 1133-1153.	2.9	20
192	Estimation of the temporal autocorrelation structure by the collocation technique with an emphasis on soil moisture studies. Hydrological Sciences Journal, 2013, 58, 1729-1747.	2.6	20
193	What Rainfall Does Not Tell Us—Enhancing Financial Instruments with Satellite-Derived Soil Moisture and Evaporative Stress. Remote Sensing, 2018, 10, 1819.	4.0	20
194	Explaining Anomalies in SAR and Scatterometer Soil Moisture Retrievals From Dry Soils With Subsurface Scattering. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2190-2197.	6.3	20
195	Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering. Remote Sensing of Environment, 2022, 276, 113025.	11.0	20
196	Editorial "Advances in Earth observation for water cycle science― Hydrology and Earth System Sciences, 2012, 16, 543-549.	4.9	19
197	Remote Sensing Time Series Revealing Land Surface Dynamics: Status Quo and the Pathway Ahead. Remote Sensing and Digital Image Processing, 2015, , 1-24.	0.7	19
198	Investigating vegetation water dynamics and drought using Metop ASCAT over the North American Grasslands. Remote Sensing of Environment, 2019, 224, 219-235.	11.0	19

#	Article	IF	CITATIONS
199	Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale. Hydrology and Earth System Sciences, 2015, 19, 3845-3856.	4.9	18
200	Homogeneity of a global multisatellite soil moisture climate data record. Geophysical Research Letters, 2016, 43, 11,245.	4.0	18
201	Practical Data Products From Cosmic-Ray Neutron Sensing for Hydrological Applications. Frontiers in Water, 2020, 2, .	2.3	18
202	FOREST AREA DERIVATION FROM SENTINEL-1 DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, III-7, 227-233.	0.0	18
203	The New, Systematic Global Flood Monitoring Product of the Copernicus Emergency Management Service. , 2021, , .		18
204	Improving the Seasonal Representation of ASCAT Soil Moisture and Vegetation Dynamics in a Temperate Climate. Remote Sensing, 2018, 10, 1788.	4.0	17
205	FOREST AREA DERIVATION FROM SENTINEL-1 DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, III-7, 227-233.	0.0	17
206	Modelling and correcting azimuthal anisotropy in Sentinel-1 backscatter data. Remote Sensing Letters, 2018, 9, 799-808.	1.4	16
207	Remotely sensed soil moisture integration in an ecosystem carbon flux model. The spatial implication. Climatic Change, 2010, 103, 117-136.	3.6	15
208	Status of the Metop ASCAT soil moisture product. , 2010, , .		15
209	Analytical solution for first-order scattering in bistatic radiative transfer interaction problems of layered media. Applied Optics, 2016, 55, 5379.	2.1	15
210	Disaggregation of Low-Resolution L-Band Radiometry Using C-Band Radar Data. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 1425-1429.	3.1	15
211	Addressing Grand Challenges in Earth Observation Science: The Earth Observation Data Centre for Water Resources Monitoring. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, II-7, 81-88.	0.0	15
212	A Sentinel-1 Backscatter Datacube for Global Land Monitoring Applications. Remote Sensing, 2021, 13, 4622.	4.0	15
213	Partial unmixing as a tool for single surface class detection and time series analysis. International Journal of Remote Sensing, 2008, 29, 3233-3255.	2.9	14
214	El Niño southern oscillation influences represented in ERS scatterometer-derived soil moisture data. Applied Geography, 2009, 29, 463-477.	3.7	14
215	Intercomparison of microwave remote-sensing soil moisture data sets based on distributed eco-hydrological model simulation and <i>in situ</i> measurements overÂthe North China Plain. International Journal of Remote Sensing, 2013, 34, 6587-6610.	2.9	14
216	Effects of Different Spatial Precipitation Input Data on Crop Model Outputs under a Central European Climate. Atmosphere, 2018, 9, 290.	2.3	14

#	Article	IF	CITATIONS
217	A large-scale 2005–2012 flood map record derived from ENVISAT-ASAR data: United Kingdom as a test case. Remote Sensing of Environment, 2021, 256, 112338.	11.0	14
218	VERTICAL VEGETATION STRUCTURE ANALYSIS AND HYDRAULIC ROUGHNESS DETERMINATION USING DENSE ALS POINT CLOUD DATA - A VOXEL BASED APPROACH. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XXXVIII-5/W12, 265-270.	0.2	14
219	From Point to Pixel Scale: An Upscaling Approach for In Situ Soil Moisture Measurements. Vadose Zone Journal, 2016, 15, 1-8.	2.2	13
220	The Added Value of the VH/VV Polarization-Ratio for Global Soil Moisture Estimations From Scatterometer Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3668-3679.	4.9	13
221	Detection of soil moisture anomalies based on Sentinel-1. Physics and Chemistry of the Earth, 2019, 112, 75-82.	2.9	13
222	Deriving exclusion maps from C-band SAR time-series in support of floodwater mapping. Remote Sensing of Environment, 2021, 265, 112668.	11.0	13
223	Identification of Active Gully Erosion Sites in the Loess Plateau of China Using MF-DFA. Remote Sensing, 2020, 12, 589.	4.0	12
224	Performance inter-comparison of soil moisture retrieval models for the MetOp-A ASCAT instrument. , 2014, , .		11
225	The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia. Hydrology and Earth System Sciences, 2016, 20, 605-624.	4.9	11
226	Does ASCAT observe the spring reactivation in temperate deciduous broadleaf forests?. Remote Sensing of Environment, 2020, 250, 112042.	11.0	11
227	DATA PROCESSING ARCHITECTURES FOR MONITORING FLOODS USING SENTINEL-1. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2020, 641-648.	0.0	11
228	Rice-planted area extraction by time series analysis of ENVISAT ASAR WS data using a phenology-based classification approach: A case study for Red River Delta, Vietnam. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 77-83.	0.2	11
229	Remote Sensing of Terrestrial Rainfall From Ku-Band Scatterometers. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 533-539.	4.9	10
230	Improving ASCAT Soil Moisture Retrievals With an Enhanced Spatially Variable Vegetation Parameterization. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 8241-8256.	6.3	10
231	Comparison of Long Short-Term Memory Networks and Random Forest for Sentinel-1 Time Series Based Large Scale Crop Classification. Remote Sensing, 2021, 13, 5000.	4.0	10
232	Observation of Hydrological Processes Using Remote Sensing. , 2011, , 351-399.		9
233	Error Assessment of the Initial Near Real-Time METOP ASCAT Surface Soil Moisture Product. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 2556-2565.	6.3	9
234	The Impact of Quadratic Nonlinear Relations between Soil Moisture Products on Uncertainty Estimates from Triple Collocation Analysis and Two Quadratic Extensions. Journal of Hydrometeorology, 2016, 17, 1725-1743.	1.9	9

#	Article	IF	CITATIONS
235	Near real time de-noising of satellite-based soil moisture retrievals: An intercomparison among three different techniques. Remote Sensing of Environment, 2017, 198, 17-29.	11.0	9
236	Toward a self-calibrated and independent SM2RAIN rainfall product. Journal of Hydrology, 2021, 603, 126837.	5.4	9
237	Validity and reliability of drought reporters in estimating soil water content and drought impacts in central Europe. Agricultural and Forest Meteorology, 2022, 315, 108808.	4.8	9
238	High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River basin as a case study. Hydrology and Earth System Sciences, 2022, 26, 2481-2497.	4.9	9
239	Prospects of Sentinel-1 for land applications. , 2012, , .		8
240	Different tree-ring width sensitivities to satellite-based soil moisture from dry, moderate and wet pedunculate oak (Quercus robur L.) stands across a southeastern distribution margin. Science of the Total Environment, 2021, 800, 149536.	8.0	8
241	C-band Scatterometers and Their Applications. , 2010, , .		7
242	TOP–ANTITOP-QUARK PRODUCTION AND DECAY PROPERTIES AT THE TEVATRON. Modern Physics Letters A, 2010, 25, 1297-1314.	1.2	7
243	Considerations for derivation and use of soil moisture data from active microwave satellites at high latitudes. , 2011, , .		7
244	Towards a high-density soil moisture network for the validation of SMAP in Petzenkirchen, Austria. , 2013, , .		7
245	Seasonality in the Angular Dependence of ASAR Wide Swath Backscatter. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 1423-1427.	3.1	7
246	Emerging outcomes from a cross-disciplinary doctoral programme on water resource systems. Water Policy, 2017, 19, 463-478.	1.5	7
247	Towards Including Dynamic Vegetation Parameters in the EUMETSAT H SAF ASCAT Soil Moisture Products. Remote Sensing, 2021, 13, 1463.	4.0	7
248	Towards constraining soil and vegetation dynamics in land surface models: Modeling ASCAT backscatter incidence-angle dependence with a Deep Neural Network. Remote Sensing of Environment, 2022, 279, 113116.	11.0	7
249	The use of coherence information from ERS tandem pairs for determining forest stock volume in SIBERIA. , 0, , .		6
250	Taking Responsibility on Publishing the Controversial Paper "On the Misdiagnosis of Surface Temperature Feedbacks from Variations in Earth's Radiant Energy Balance―by Spencer and Braswell, Remote Sens. 2011, 3(8), 1603-1613. Remote Sensing, 2011, 3, 2002-2004.	4.0	6
251	Assimilation of satellite soil moisture data into rainfall-runoff modelling for several catchments worldwide. , 2013, , .		6
252	Potential of Sentinel-1 for high-resolution soil moisture monitoring. , 2013, , .		6

Potential of Sentinel-1 for high-resolution soil moisture monitoring. , 2013, , . 252

#	Article	IF	CITATIONS
253	Development of an Earth Observation Cloud Platform in Support to Water Resources Monitoring. , 2018, , 275-283.		6
254	The effects of radiometric terrain flattening on SAR-based forest mapping and classification. Remote Sensing Letters, 2022, 13, 855-864.	1.4	6
255	The development of a processing environment for time-series analysis of SeaWinds scatterometer data. , 0, , .		5
256	Analysis of yield, sowing and flowering dates of barley of field survey results in Spain. Agricultural Systems, 1999, 59, 107-122.	6.1	4
257	Remotely sensed land-cover changes in the Wuda and Ruqigou-Gulaben coal-mining areas of China. , 2007, , .		4
258	Validation of Coarse Resolution Microwave Soil Moisture Products. , 2008, , .		4
259	A Better Understanding of Our Earth through Remote Sensing. Remote Sensing, 2009, 1, 1-2.	4.0	4
260	The medium resolution soil moisture dataset: Overview of the SHARE ESA DUE TIGER project. , 2009, , .		4
261	Flood delineation from synthetic aperture radar data with the help of a priori knowledge from historical acquisitions and digital elevation models in support of near-real-time flood mapping. , 2012, , .		4
262	How do Spatial Scale, Noise, and Reference Data affect Empirical Estimates of Error in ASAR-Derived 1 km Resolution Soil Moisture?. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3880-3891.	4.9	4
263	Similarities Between Spaceborne Active and Airborne Passive Microwave Observations at 1 km Resolution. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 2178-2182.	3.1	4
264	An Analysis of Ku-Band Profiling Radar Observations of Boreal Forest. Remote Sensing, 2017, 9, 1252.	4.0	4
265	The performance of Metop Advanced SCATterometer soil moisture data as a complementary source for the estimation of crop-soil water balance in Central Europe. Journal of Agricultural Science, 2018, 156, 577-598.	1.3	4
266	Data Identification and Process Monitoring for Reproducible Earth Observation Research. , 2019, , .		4
267	Laser Pulse Interaction with Forest Canopy: Geometric and Radiometric Issues. Managing Forest Ecosystems, 2014, , 19-41.	0.9	4
268	The influence of vegetation water dynamics on the ASCAT backscatter–incidence angle relationship in the Amazon. Hydrology and Earth System Sciences, 2022, 26, 2997-3019.	4.9	4
269	Information content of ERS SAR interferometric products for forest classification in SIBERIA: a case study over the Bolshemurtinskii forest enterprise. , 0, , .		3
270	Utilization of full-waveform data in airborne laser scanning applications. , 2007, , .		3

#	Article	IF	CITATIONS
271	On the ability of the ERS scatterometer to detect vegetation properties. , 2009, , .		3
272	What perspective in remote sensing of soil moisture for hydrological applications by coarse-resolution sensors. Proceedings of SPIE, 2011, , .	0.8	3
273	Constructing and analyzing a 32-years climate data record of remotely sensed soil moisture. , 2012, , .		3
274	Soil moisture mapping in permafrost regions - An outlook to Sentinel-1. , 2012, , .		3
275	Identification of soil moisture retrieval errors: Learning from the comparison of SMOS and ASCAT. , 2012, , .		3
276	Temporal error variability of coarse scale soil moisture products - case study in central Spain. , 2012, ,		3
277	Operations, Challenges, and Prospects of Satellite-Based Surface Soil Moisture Data Services. , 2013, , 463-488.		3
278	Open source toolbox and web application for soil moisture validation. , 2014, , .		3
279	An Automatic SAR-Based Change Detection Method for Generating Large-Scale Flood Data Records: The UK as a Test Case. , 2019, , .		3
280	Regional features of topographic relief over the Loess Plateau, China: evidence from ensemble empirical mode decomposition. Frontiers of Earth Science, 2020, 14, 695-710.	2.1	3
281	Soil Moisture and Precipitation: The SM2RAIN Algorithm for Rainfall Retrieval from Satellite Soil Moisture. Advances in Global Change Research, 2020, , 1013-1027.	1.6	3
282	Deriving an Exclusion Map (Ex-Map) from Sentinel-l Time Series for Supporting Floodwater Mapping. , 2021, , .		3
283	Classification of Wheat and Barley Fields Using Sentinel-1 Backscatter. , 2020, , .		3
284	Planting date estimation in semi-arid environments based on Ku-band radar scatterometer data. , 0, , .		2
285	Evaluation of the influence of land cover on the noise level of ERS-scatterometer backscatter. , 2007, ,		2
286	Error Estimation of Soil Moisture Derived from Active and Passive Microwave Satellite Observations and Model Data. , 2008, , .		2
287	Estimation of surface soil moisture in alpine areas based on medium spatial resolution SAR time-series and upscaled in-situ measurements. , 2014, , .		2
288	Selecting algorithms for Earth observation of climate within the European Space Agency Climate Change Initiative: Introduction to a special issue. Remote Sensing of Environment, 2015, 162, 239-241.	11.0	2

#	Article	IF	CITATIONS
289	Geocoding uncertainty analysis for the automated processing of Sentinel-1 data using Sentinel-1 Toolbox software. , 2016, , .		2
290	DERIVING EXCLUSION MAPS FROM C-BAND SAR TIME-SERIES: AN ADDITIONAL INFORMATION LAYER FOR SAR-BASED FLOOD EXTENT MAPPING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-1-2020, 395-400.	0.0	2
291	Analysis of short-term soil moisture effects on the ASCAT backscatter-incidence angle dependence. Science of Remote Sensing, 2022, , 100053.	4.8	2
292	Land cover effects on ERS scatterometer data. , 1998, , .		1
293	Assessing water-limited crop production with a scatterometer based crop growth monitoring system. , 0, , .		1
294	Monitoring freeze-thaw events in Siberia using the seawinds Ku-band scatterometer: first results. , 0, ,		1
295	ENVISAT's capabilities for global monitoring of the hydrosphere. , 0, , .		1
296	Application of C and Ku-Band scatterometer data for catchment hydrology in northern latitudes. , 2007, , .		1
297	Monitoring of thawing process using envisat asar global mode data. , 2010, , .		1
298	Remote Sensing of Spring Snowmelt in Siberia. Advances in Global Change Research, 2010, , 135-155.	1.6	1
299	Evaluation of the ASAR GM soil moisture product. , 2012, , .		1
300	Time series analysis of SMOS and ASCAT: Soil moisture product validation in the Rur and Erft catchments. , 2012, , .		1
301	Foreword to the Special Issue on "New Challenges and Opportunities in Scatterometry― IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2083-2085.	4.9	1
302	Long-Term Soil Moisture Data Records Derived From a Series of European Scatterometers. , 2018, , 51-84.		1
303	Statistical Merging of Active and Passive Microwave Observations Into Long-Term Soil Moisture Climate Data Records. , 2018, , .		1
304	Remotely sensed soil moisture integration in an ecosystem carbon flux model. The spatial implication. , 2010, , 117-136.		1
305	A diurnal difference indicator for freeze-thaw monitoring from Ku band scatterometer applied within the Siberia II project. , 0, , .		0
306	Waveform calibration strategies for a small-footprint laser scanner. , 2008, , .		0

#	Article	IF	CITATIONS
307	Scatterometer and ScanSAR soil moisture observations of the contiguous United States. , 2009, , .		0
308	Inferring the impact of radar incidence angle on soil moisture retrieval skill using data assimilation. , 2010, , .		0
309	Intercomparison of active microwave derived surface status and MODIS land surface temperature at high latitudes. , 2012, , .		0
310	Soil Moisture from Thermal Infrared Satellite Data: Synergies with Microwave Data. Remote Sensing and Digital Image Processing, 2013, , 315-330.	0.7	0
311	34 years of remotely sensed soil moisture: What climate signals do we (not) see?. , 2013, , .		0
312	Compared performances of microwave passive soil moisture retrievals (SMOS) and active soil moisture retrievals (ASCAT) using land surface model estimates (MERRA-LAND). , 2014, , .		0
313	Developing an operational algorithm based on ANN for the retrieval of SMC from the incoming metop SCA mission. , 2015, , .		0
314	A novel approach to improve spatial detail in modeled soil moisture through the integration of remote sensing data. , 2015, , .		0
315	Investigating Radar Time Series for Hydrological Characterisation in the Lower Mekong Basin. Remote Sensing and Digital Image Processing, 2015, , 357-381.	0.7	0
316	Comparison of Different High-Resolution Soil Moisture Products Across an Agricultural Landscape in South-Eastern Australia. , 2018, , .		0
317	THE POTENTIAL OF SENTINEL-1 DATA TO SUPPLEMENT HIGH RESOLUTION EARTH OBSERVATION DATA FOR MONITORING GREEN AREAS IN CITIES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIII-B3-2021, 567-574.	0.2	0
318	Error characterization of microwave satellite soil moisture data sets using Fourier analysis. , 0, , .		0
319	Long-term Soil Moisture Time Series Analyses based on Active Microwave Backscatter Measurements. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 545-550.	0.2	0