
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1295011/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surrogates for rigidity and PIGD MDS-UPDRS subscores using wearable sensors. Gait and Posture, 2022, 91, 186-191.	0.6	10
2	Inertial Sensor Algorithm to Estimate Walk Distance. Sensors, 2022, 22, 1077.	2.1	8
3	Reply from Jumes Leopoldino Oliveira Lira, Carlos Ugrinowitsch, Daniel Boari Coelho, Luis Augusto Teixeira, Andrea Cristina de Limaâ€Pardini, Fernando Henrique Magalhães, Egberto Reis Barbosa, Fay B. Horak, and Carla Silvaâ€Batista. Journal of Physiology, 2022, 600, 421-422.	1.3	0
4	Inertial Sensor Algorithms to Characterize Turning in Neurological Patients With Turn Hesitations. IEEE Transactions on Biomedical Engineering, 2021, 68, 2615-2625.	2.5	4
5	Does gait bout definition influence the ability to discriminate gait quality between people with and without multiple sclerosis during daily life?. Gait and Posture, 2021, 84, 108-113.	0.6	7
6	Cortical thickness as predictor of response to exercise in people with Parkinson's disease. Human Brain Mapping, 2021, 42, 139-153.	1.9	11
7	The Adapted Resistance Training with Instability Randomized Controlled Trial for Gait Automaticity. Movement Disorders, 2021, 36, 152-163.	2.2	9
8	Measuring freezing of gait during daily-life: an open-source, wearable sensors approach. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 1.	2.4	131
9	Poor sleep quality is associated with cognitive, mobility, and anxiety disability that underlie freezing of gait in Parkinson's disease. Gait and Posture, 2021, 85, 157-163.	0.6	9
10	Dual-Task Costs of Quantitative Gait Parameters While Walking and Turning in People with Parkinson's Disease: Beyond Gait Speed. Journal of Parkinson's Disease, 2021, 11, 653-664.	1.5	13
11	Exploring persistent complaints of imbalance after mTBI: Oculomotor, peripheral vestibular and central sensory integration function. Journal of Vestibular Research: Equilibrium and Orientation, 2021, 31, 519-530.	0.8	17
12	Functional limits of stability and standing balance in people with Parkinson's disease with and without freezing of gait using wearable sensors. Gait and Posture, 2021, 87, 123-129.	0.6	9
13	Gait Variability in Spinocerebellar Ataxia Assessed Using Wearable Inertial Sensors. Movement Disorders, 2021, 36, 2922-2931.	2.2	34
14	Effectiveness of the Mobility Rehab System for Mobility Training in Older Adults: A Pragmatic Clinical Trial. Frontiers in Neurology, 2021, 12, 680637.	1.1	2
15	Evaluation of movement and brain activity. Clinical Neurophysiology, 2021, 132, 2608-2638.	0.7	22
16	Relating Response Inhibition, Brain Connectivity, and Freezing of Gait in People with Parkinson's Disease. Journal of the International Neuropsychological Society, 2021, 27, 733-743.	1.2	1
17	Relationships Between Sensorimotor Inhibition and Mobility in Older Adults With and Without Parkinson's Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 630-637.	1.7	6
18	Cerebellar White Matter Damage Is Associated With Postural Sway Deficits in People With Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation, 2020, 101, 258-264.	0.5	26

#	Article	IF	CITATIONS
19	Responsiveness of Objective vs. Clinical Balance Domain Outcomes for Exercise Intervention in Parkinson's Disease. Frontiers in Neurology, 2020, 11, 940.	1.1	19
20	Brain networks associated with anticipatory postural adjustments in Parkinson's disease patients with freezing of gait. NeuroImage: Clinical, 2020, 28, 102461.	1.4	10
21	Laboratory versus daily life gait characteristics in patients with multiple sclerosis, Parkinson's disease, and matched controls. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 159.	2.4	38
22	Effects of the agility boot camp with cognitive challenge (ABC-C) exercise program for Parkinson's disease. Npj Parkinson's Disease, 2020, 6, 31.	2.5	25
23	Relating Parkinson freezing and balance domains: A structural equation modeling approach. Parkinsonism and Related Disorders, 2020, 79, 73-78.	1.1	15
24	Reply to: â€~Letter to the Editor on "A Randomized Controlled Trial of Exercise for Parkinsonian Individuals With Freezing of Gaitâ€â€™. Movement Disorders, 2020, 35, 2123-2124.	2.2	0
25	Effect of Bout Length on Gait Measures in People with and without Parkinson's Disease during Daily Life. Sensors, 2020, 20, 5769.	2.1	23
26	Digital Biomarkers of Mobility in Parkinson's Disease During Daily Living. Journal of Parkinson's Disease, 2020, 10, 1099-1111.	1.5	40
27	A Randomized, Controlled Trial of Exercise for Parkinsonian Individuals With Freezing of Gait. Movement Disorders, 2020, 35, 1607-1617.	2.2	39
28	Lateralized Connectivity between Globus Pallidus and Motor Cortex is Associated with Freezing of Gait in Parkinson's Disease. Neuroscience, 2020, 443, 44-58.	1.1	14
29	Inertial Sensor-Based Centripetal Acceleration as a Correlate for Lateral Margin of Stability During Walking and Turning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 629-636.	2.7	15
30	The Sensor Technology and Rehabilitative Timing (START) Protocol: A Randomized Controlled Trial for the Rehabilitation of Mild Traumatic Brain Injury. Physical Therapy, 2020, 100, 687-697.	1.1	18
31	Quantity and quality of gait and turning in people with multiple sclerosis, Parkinson's disease and matched controls during daily living. Journal of Neurology, 2020, 267, 1188-1196.	1.8	47
32	Loss of presynaptic inhibition for step initiation in parkinsonian individuals with freezing of gait. Journal of Physiology, 2020, 598, 1611-1624.	1.3	21
33	Differential effects of visual versus auditory biofeedback training for voluntary postural sway. PLoS ONE, 2020, 15, e0244583.	1.1	8
34	Differential effects of visual versus auditory biofeedback training for voluntary postural sway. , 2020, 15, e0244583.		0
35	Differential effects of visual versus auditory biofeedback training for voluntary postural sway. , 2020, 15, e0244583.		0
36	Differential effects of visual versus auditory biofeedback training for voluntary postural sway. , 2020, 15, e0244583.		0

#	Article	IF	CITATIONS
37	Differential effects of visual versus auditory biofeedback training for voluntary postural sway. , 2020, 15, e0244583.		Ο
38	Serum histidine is lower in fatigued women with multiple sclerosis. Fatigue: Biomedicine, Health and Behavior, 2019, 7, 69-80.	1.2	5
39	How to Select Balance Measures Sensitive to Parkinson's Disease from Body-Worn Inertial Sensors—Separating the Trees from the Forest. Sensors, 2019, 19, 3320.	2.1	44
40	Effects of augmenting cholinergic neurotransmission on balance in Parkinson's disease. Parkinsonism and Related Disorders, 2019, 69, 40-47.	1.1	18
41	Clinical and methodological challenges for assessing freezing of gait: Future perspectives. Movement Disorders, 2019, 34, 783-790.	2.2	97
42	A roadmap for implementation of patientâ€centered digital outcome measures in Parkinson's disease obtained using mobile health technologies. Movement Disorders, 2019, 34, 657-663.	2.2	213
43	Postural sway, falls, and self-reported neuropathy in aging female cancer survivors. Gait and Posture, 2019, 69, 136-142.	0.6	28
44	Intersegmental coordination patterns are differently affected in Parkinson's disease and cerebellar ataxia. Journal of Neurophysiology, 2019, 121, 672-689.	0.9	10
45	Dysfunctional Limbic Circuitry Underlying Freezing of Gait in Parkinson's Disease. Neuroscience, 2018, 374, 119-132.	1.1	91
46	Effects of lipoic acid on walking performance, gait, and balance in secondary progressive multiple sclerosis. Complementary Therapies in Medicine, 2018, 41, 169-174.	1.3	22
47	Day-to-Day Variability of Postural Sway and Its Association With Cognitive Function in Older Adults: A Pilot Study. Frontiers in Aging Neuroscience, 2018, 10, 126.	1.7	26
48	Gait Asymmetry in People With Parkinson's Disease Is Linked to Reduced Integrity of Callosal Sensorimotor Regions. Frontiers in Neurology, 2018, 9, 215.	1.1	27
49	What If Low Back Pain Is the Most Prevalent Parkinsonism in the World?. Frontiers in Neurology, 2018, 9, 313.	1.1	6
50	Gait Stability Has Phase-Dependent Dual-Task Costs in Parkinson's Disease. Frontiers in Neurology, 2018, 9, 373.	1.1	26
51	Assessment and rehabilitation of central sensory impairments for balance in mTBI using auditory biofeedback: a randomized clinical trial. BMC Neurology, 2017, 17, 41.	0.8	35
52	Validity of the Instrumented Push and Release Test to Quantify Postural Responses in Persons With Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation, 2017, 98, 1325-1331.	0.5	28
53	Dual task interference on postural sway, postural transitions and gait in people with Parkinson's disease and freezing of gait. Gait and Posture, 2017, 56, 76-81.	0.6	104
54	Instrumented balance and walking assessments in persons with multiple sclerosis show strong test-retest reliability. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 43.	2.4	46

#	Article	IF	CITATIONS
55	The clinical significance of freezing while turning in Parkinson's disease. Neuroscience, 2017, 343, 222-228.	1.1	101
56	Postural motor learning in Parkinson's disease: The effect of practice on continuous compensatory postural regulation. Gait and Posture, 2017, 57, 299-304.	0.6	18
57	Relationship between perceived fatigue and performance fatigability in people with multiple sclerosis: A systematic review and meta-analysis. Journal of Psychosomatic Research, 2017, 100, 1-7.	1.2	63
58	Gait initiation is impaired in subjects with Parkinson's disease in the OFF state: Evidence from the analysis of the anticipatory postural adjustments through wearable inertial sensors. Gait and Posture, 2017, 51, 218-221.	0.6	23
59	Investigation of Anticipatory Postural Adjustments during One-Leg Stance Using Inertial Sensors: Evidence from Subjects with Parkinsonism. Frontiers in Neurology, 2017, 8, 361.	1.1	22
60	Recovery from Multiple APAs Delays Gait Initiation in Parkinson's Disease. Frontiers in Human Neuroscience, 2017, 11, 60.	1.0	25
61	Impaired perception of surface tilt in progressive supranuclear palsy. PLoS ONE, 2017, 12, e0173351.	1.1	19
62	Associations between mobility, cognition and callosal integrity in people with parkinsonism. NeuroImage: Clinical, 2016, 11, 415-422.	1.4	27
63	Postural motor learning in people with Parkinson's disease. Journal of Neurology, 2016, 263, 1518-1529.	1.8	48
64	Letter to the Editor: On "Advantages and disadvantages of stiffness instructions when studying postural control―by C.T. Bonnet: Comments on "Advantages and disadvantages of stiffness instructions when studying postural control― Gait and Posture, 2016, 46, 214.	0.6	0
65	Responsiveness of the Balance Evaluation Systems Test (BESTest) in People With Subacute Stroke. Physical Therapy, 2016, 96, 1638-1647.	1.1	42
66	Balance and Gait Represent Independent Domains of Mobility in Parkinson Disease. Physical Therapy, 2016, 96, 1364-1371.	1.1	77
67	Objective Gait and Balance Impairments Relate to Balance Confidence and Perceived Mobility in People With Parkinson Disease. Physical Therapy, 2016, 96, 1734-1743.	1.1	55
68	Quantifying effects of age on balance and gait with inertial sensors in community-dwelling healthy adults. Experimental Gerontology, 2016, 85, 48-58.	1.2	51
69	Pharmacological treatment in Parkinson's disease: Effects on gait. Parkinsonism and Related Disorders, 2016, 31, 3-13.	1.1	120
70	Alleviating freezing of gait using phase-dependent tactile biofeedback. , 2016, 2016, 5841-5844.		12
71	Velocity dependence of vestibular information for postural control on tilting surfaces. Journal of Neurophysiology, 2016, 116, 1468-1479.	0.9	17
72	The quality of turning in Parkinson's disease: a compensatory strategy to prevent postural instability?. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 39.	2.4	107

#	Article	IF	CITATIONS
73	More Falls in Cerebellar Ataxia When Standing on a Slow Up-Moving Tilt of the Support Surface. Cerebellum, 2016, 15, 336-342.	1.4	12
74	Freezing of gait associated with a corpus callosum lesion. Journal of Clinical Movement Disorders, 2016, 3, 2.	2.2	5
75	Consistency in Administration and Response for the Backward Push and Release Test: A Clinical Assessment of Postural Responses. Physiotherapy Research International, 2016, 21, 36-46.	0.7	10
76	Continuous Monitoring of Turning Mobility and Its Association to Falls and Cognitive Function: A Pilot Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1102-1108.	1.7	122
77	Characterization of Compensatory Stepping in People With Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation, 2016, 97, 513-521.	0.5	42
78	Potential of APDM mobility lab for the monitoring of the progression of Parkinson's disease. Expert Review of Medical Devices, 2016, 13, 455-462.	1.4	87
79	Postural Motor Learning Deficits in People With MS in Spatial but Not Temporal Control of Center of Mass. Neurorehabilitation and Neural Repair, 2016, 30, 722-730.	1.4	21
80	Cognitive Contributions to Freezing of Gait in Parkinson Disease: Implications for Physical Rehabilitation. Physical Therapy, 2016, 96, 659-670.	1.1	91
81	Validity and reliability of an IMU-based method to detect APAs prior to gait initiation. Gait and Posture, 2016, 43, 125-131.	0.6	81
82	Continuous monitoring of turning in Parkinson's disease: Rehabilitation potential. NeuroRehabilitation, 2015, 37, 3-10.	0.5	135
83	Effect of augmenting cholinergic function on gait and balance. BMC Neurology, 2015, 15, 264.	0.8	23
84	Levodopa <scp>I</scp> s a <scp>D</scp> oubleâ€ <scp>E</scp> dged <scp>S</scp> word for <scp>B</scp> alance and <scp>G</scp> ait in <scp>P</scp> eople <scp>W</scp> ith <scp>P</scp> arkinson's <scp>D</scp> isease. Movement Disorders, 2015, 30, 1361-1370.	2.2	300
85	Older adults can improve compensatory stepping with repeated postural perturbations. Frontiers in Aging Neuroscience, 2015, 7, 201.	1.7	57
86	Functional connectivity underlying postural motor adaptation in people with multiple sclerosis. NeuroImage: Clinical, 2015, 8, 281-289.	1.4	27
87	Reply: Does dominant pedunculopontine nucleus exist? Probably not. Brain, 2015, 138, e347-e347.	3.7	Ο
88	Lighten Up. Neurorehabilitation and Neural Repair, 2015, 29, 878-888.	1.4	27
89	Domains and correlates of clinical balance impairment associated with Huntington's disease. Gait and Posture, 2015, 41, 867-870.	0.6	10
90	Dual-task interference and brain structural connectivity in people with Parkinson's disease who freeze. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 786-792.	0.9	70

#	Article	IF	CITATIONS
91	Reply: Does dominant pedunculopontine nucleus exist?. Brain, 2015, 138, e324-e324.	3.7	2
92	Associations between Proprioceptive Neural Pathway Structural Connectivity and Balance in People with Multiple Sclerosis. Frontiers in Human Neuroscience, 2014, 8, 814.	1.0	80
93	Validating and Calibrating the Nintendo Wii Balance Board to Derive Reliable Center of Pressure Measures. Sensors, 2014, 14, 18244-18267.	2.1	96
94	Dual tasking during postural stepping responses increases falls but not freezing in people with Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, 779-781.	1.1	31
95	Body-worn sensors capture variability, but not decline, of gait and balance measures in multiple sclerosis over 18 months. Gait and Posture, 2014, 39, 958-964.	0.6	53
96	Postural Response Latencies Are Related to Balance Control During Standing and Walking in Patients With Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation, 2014, 95, 1390-1397.	0.5	48
97	Instrumenting the Balance Error Scoring System for Use With Patients Reporting Persistent Balance Problems After Mild Traumatic Brain Injury. Archives of Physical Medicine and Rehabilitation, 2014, 95, 353-359.	0.5	127
98	Inhibition, Executive Function, and Freezing of Gait. Journal of Parkinson's Disease, 2014, 4, 111-122.	1.5	79
99	Functional Reorganization of the Locomotor Network in Parkinson Patients with Freezing of Gait. PLoS ONE, 2014, 9, e100291.	1.1	164
100	Objective biomarkers of balance and gait for Parkinson's disease using bodyâ€worn sensors. Movement Disorders, 2013, 28, 1544-1551.	2.2	196
101	Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurology, The, 2011, 10, 734-744.	4.9	1,003
102	Mobility Lab to Assess Balance and Gait with Synchronized Body-worn Sensors. Journal of Bioengineering & Biomedical Science, 2011, Suppl 1, 007.	0.2	151
103	iTUG, a Sensitive and Reliable Measure of Mobility. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 303-310.	2.7	426
104	Invited Commentary. Physical Therapy, 2010, 90, 491-492.	1.1	4
105	The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 171-176.	0.9	296
106	Vibrotactile Biofeedback Improves Tandem Gait in Patients with Unilateral Vestibular Loss. Annals of the New York Academy of Sciences, 2009, 1164, 279-281.	1.8	41
107	Postural Compensation for Vestibular Loss. Annals of the New York Academy of Sciences, 2009, 1164, 76-81.	1.8	68
108	The Balance Evaluation Systems Test (BESTest) to Differentiate Balance Deficits. Physical Therapy, 2009, 89, 484-498.	1.1	762

#	Article	IF	CITATIONS
109	Analyzing 180° turns using an inertial system reveals early signs of progression of parkinson's disease. , 2009, 2009, 224-7.		66
110	Gait and balance disorders. , 2002, , 581-592.		3
111	Transitions in a postural task: do the recruitment and suppression of degrees of freedom stabilize posture?. Experimental Brain Research, 2001, 139, 482-494.	0.7	57
112	Emergence of Postural Patterns as a Function of Vision and Translation Frequency. Journal of Neurophysiology, 1999, 81, 2325-2339.	0.9	188
113	Step initiation in Parkinson's disease: Influence of levodopa and external sensory triggers. Movement Disorders, 1997, 12, 206-215.	2.2	295