Ilias Kyriazakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1294444/publications.pdf

Version: 2024-02-01

186209 189801 2,987 102 28 50 citations h-index g-index papers 104 104 104 2919 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of host nutrition on the development and consequences of nematode parasitism in ruminants. Trends in Parasitology, 2001, 17, 325-330.	1.5	282
2	Citizens, consumers and farm animal welfare: A meta-analysis of willingness-to-pay studies. Food Policy, 2017, 68, 112-127.	2.8	211
3	Early detection of health and welfare compromises through automated detection of behavioural changes in pigs. Veterinary Journal, 2016, 217, 43-51.	0.6	172
4	Breeding for efficiency in the broiler chicken: A review. Agronomy for Sustainable Development, 2016, 36, 1.	2.2	130
5	To split behaviour into bouts, log-transform the intervals. Animal Behaviour, 1999, 57, 807-817.	0.8	120
6	Nutrient partitioning between reproductive and immune functions in animals. Proceedings of the Nutrition Society, 2001, 60, 515-525.	0.4	105
7	Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Scientific Reports, 2017, 7, 17582.	1.6	101
8	Consequences of genetic change in farm animals on food intake and feeding behaviour. Proceedings of the Nutrition Society, 2001, 60, 115-125.	0.4	74
9	Diet selection and animal state: an integrative framework. Proceedings of the Nutrition Society, 1999, 58, 765-772.	0.4	70
10	The need for co-product allocation in the life cycle assessment of agricultural systemsâ€"is "biophysical―allocation progress?. International Journal of Life Cycle Assessment, 2017, 22, 128-137.	2.2	63
11	Automated Individual Pig Localisation, Tracking and Behaviour Metric Extraction Using Deep Learning. IEEE Access, 2019, 7, 108049-108060.	2.6	63
12	How can we improve the environmental sustainability of poultry production?. Proceedings of the Nutrition Society, 2016, 75, 265-273.	0.4	58
13	Prospects for sustainability of pig production in relation to climate change and novel feed resources. Journal of the Science of Food and Agriculture, 2020, 100, 3575-3586.	1.7	56
14	Consumer attitudes towards production diseases in intensive production systems. PLoS ONE, 2019, 14, e0210432.	1.1	49
15	Health trajectories reveal the dynamic contributions of host genetic resistance and tolerance to infection outcome. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152151.	1.2	46
16	Environmental impacts of housing conditions and manure management in European pig production systems through a life cycle perspective: A case study in Denmark. Journal of Cleaner Production, 2020, 253, 120005.	4.6	45
17	The temporal structure of feeding behavior. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R378-R393.	0.9	42
18	Comparing the environmental impacts of alternative protein crops in poultry diets: The consequences of uncertainty. Agricultural Systems, 2013, 121, 33-42.	3.2	42

#	Article	IF	CITATIONS
19	A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory Disease in Pigs Using Multiple Environmental Sensors. Sensors, 2018, 18, 2521.	2.1	42
20	Automatic recognition of feeding and foraging behaviour in pigs using deep learning. Biosystems Engineering, 2020, 197, 91-104.	1.9	39
21	HERBIVORE PHYSIOLOGICAL STATE AFFECTS FORAGING TRADE-OFF DECISIONS BETWEEN NUTRIENT INTAKE AND PARASITE AVOIDANCE. Ecology, 2001, 82, 1138-1150.	1.5	38
22	A critical reflection on intensive pork production with an emphasis on animal health and welfare. Journal of Animal Science, 2020, 98, S15-S26.	0.2	38
23	Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs. Scientific Reports, 2020, 10, 13665.	1.6	38
24	The effects of condensed tannins supplementation of foods with different protein content on parasitism, food intake and performance of sheep infected with (i>Trichostrongylus colubriformis (i). British Journal of Nutrition, 2001, 86, 697-706.	1.2	37
25	Does selection for growth rate in broilers affect their resistance and tolerance to Eimeria maxima?. Veterinary Parasitology, 2018, 258, 88-98.	0.7	37
26	Challenges and priorities for modelling livestock health and pathogens in the context of climate change. Environmental Research, 2016, 151, 130-144.	3.7	35
27	Risk factors for poor health and performance in European broiler production systems. BMC Veterinary Research, 2020, 16, 287.	0.7	35
28	Risk factors associated with the different categories of piglet perinatal mortality in French farms. Preventive Veterinary Medicine, 2017, 137, 1-12.	0.7	32
29	Should we aim for genetic improvement in host resistance or tolerance to infectious pathogens?. Frontiers in Genetics, 2012, 3, 272.	1.1	29
30	The challenge of incorporating animal welfare in a social life cycle assessment model of European chicken production. International Journal of Life Cycle Assessment, 2019, 24, 1093-1104.	2.2	29
31	In silicoexploration of the mechanisms that underlie parasite-induced anorexia in sheep. British Journal of Nutrition, 2011, 106, 1023-1039.	1.2	28
32	What is the relationship between level of infection and â€~sickness behaviour' in cattle?. Applied Animal Behaviour Science, 2013, 147, 1-10.	0.8	28
33	Changes in Faecal Microbiota Profiles Associated With Performance and Birthweight of Piglets. Frontiers in Microbiology, 2020, 11, 917.	1.5	28
34	Is anorexia during infection in animals affected by food composition?. Animal Feed Science and Technology, 2010, 156, 1-9.	1.1	27
35	Porcine lie detectors: Automatic quantification of posture state and transitions in sows using inertial sensors. Computers and Electronics in Agriculture, 2016, 127, 521-530.	3.7	27
36	Factors associated with specific health, welfare and reproductive performance indicators in pig herds from five EU countries. Preventive Veterinary Medicine, 2018, 159, 106-114.	0.7	26

#	Article	IF	CITATIONS
37	Financial Analysis of Herd Status and Vaccination Practices for Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Mycoplasma hyopneumoniae in Farrow-to-Finish Pig Farms Using a Bio-Economic Simulation Model. Frontiers in Veterinary Science, 2020, 7, 556674.	0.9	25
38	Partitioning of limiting protein and energy in the growing pig: testing quantitative rules against experimental data. British Journal of Nutrition, 2005, 93, 213-224.	1.2	24
39	Modelling the consequences of targeted selective treatment strategies on performance and emergence of anthelmintic resistance amongst grazing calves. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 258-271.	1.4	23
40	Connecting Different Data Sources to Assess the Interconnections between Biosecurity, Health, Welfare, and Performance in Commercial Pig Farms in Great Britain. Frontiers in Veterinary Science, 2018, 5, 41.	0.9	23
41	Pathogen-induced anorexia: a herbivore strategy or an unavoidable consequence of infection?. Animal Production Science, 2014, 54, 1190.	0.6	23
42	Interactions between dietary calcium and phosphorus level, and vitamin D source on bone mineralization, performance, and intestinal morphology of coccidia-infected broilers. Poultry Science, 2019, 98, 5679-5690.	1.5	21
43	Environment-, health-, performance- and welfare-related parameters in pig barns with natural and mechanical ventilation. Preventive Veterinary Medicine, 2020, 183, 105150.	0.7	21
44	Environmental benefits of using turkey litter as a fuel instead of a fertiliser. Journal of Cleaner Production, 2016, 113, 167-175.	4.6	20
45	The "Real Welfare―scheme: Identification of risk and protective factors for welfare outcomes in commercial pig farms in the UK. Preventive Veterinary Medicine, 2017, 146, 34-43.	0.7	20
46	Use of multi-trait and random regression models to identify genetic variation in tolerance to porcine reproductive and respiratory syndrome virus. Genetics Selection Evolution, 2017, 49, 37.	1.2	20
47	Effects of reducing growth rate via diet dilution on bone mineralization, performance and carcass yield of coccidia-infected broilers. Poultry Science, 2019, 98, 5477-5487.	1.5	20
48	The problem of predicting food intake during the period of adaptation to a new food: a model. British Journal of Nutrition, 2003, 89, 383-399.	1.2	19
49	A reassessment of the vitamin D requirements of modern broiler genotypes. Poultry Science, 2019, 98, 330-340.	1.5	18
50	Quantifying the effect of coccidiosis on broiler performance and infection outcomes in the presence and absence of control methods. Poultry Science, 2022, 101, 101746.	1.5	18
51	Nutrition and Behaviour Group Symposium on †Measuring nutrient intake†Measuring food intake in farm and laboratory animals. Proceedings of the Nutrition Society, 1998, 57, 313-319.	0.4	17
52	Which is the best phenotypic trait for use in a targeted selective treatment strategy for growing lambs in temperate climates?. Veterinary Parasitology, 2016, 226, 174-188.	0.7	17
53	How do pigs deal with dietary phosphorus deficiency?. British Journal of Nutrition, 2020, 124, 256-272.	1.2	17
54	Sows in mid parity are best foster mothers for the pre- and post-weaning performance of both light and heavy piglets1. Journal of Animal Science, 2019, 97, 1656-1670.	0.2	16

#	Article	IF	Citations
55	How many pigs within a group need to be sick to lead to a diagnostic change in the group's behavior?1. Journal of Animal Science, 2019, 97, 1956-1966.	0.2	15
56	A method to estimate the environmental impacts from genetic change in pig production systems. International Journal of Life Cycle Assessment, 2020, 25, 523-537.	2.2	15
57	Cost-effectiveness of environmental impact abatement measures in a European pig production system. Agricultural Systems, 2020, 182, 102843.	3.2	15
58	Modelling the short- and long-term impacts of drenching frequency and targeted selective treatment on the performance of grazing lambs and the emergence of anthelmintic resistance. Parasitology, 2013, 140, 780-791.	0.7	14
59	Weaning age and post-weaning nursery feeding regime are important in improving the performance of lightweight pigs. Journal of Animal Science, 2019, 97, 4834-4844.	0.2	14
60	Freedom to lie: How farrowing environment affects sow lying behaviour assessment using inertial sensors. Computers and Electronics in Agriculture, 2019, 157, 549-557.	3.7	14
61	A simulation model to investigate interactions between first season grazing calves and Ostertagia ostertagi. Veterinary Parasitology, 2016, 226, 198-209.	0.7	13
62	Familiarity with and uptake of alternative methods to control sheep gastro-intestinal parasites on farms in England. Veterinary Parasitology, 2016, 221, 1-8.	0.7	11
63	Harnessing longitudinal information to identify genetic variation in tolerance of pigs to Porcine Reproductive and Respiratory Syndrome virus infection. Genetics Selection Evolution, 2018, 50, 50.	1.2	11
64	Dietary vitamin D improves performance and bone mineralisation, but increases parasite replication and compromises gut health in Eimeria-infected broilers. British Journal of Nutrition, 2019, 122, 676-688.	1.2	11
65	The effect of consumption of foods that differ in energy density and/or sodium bicarbonate supplementation on subsequent diet selection in sheep. British Journal of Nutrition, 2002, 88, 81-90.	1.2	10
66	Do not neglect calcium: a systematic review and meta-analysis (meta-regression) of its digestibility and utilisation in growing and finishing pigs. British Journal of Nutrition, 2018, 119, 1207-1219.	1.2	10
67	A stochastic model to investigate the effects of control strategies on calves exposed to <i>Ostertagia ostertagi</i> . Parasitology, 2016, 143, 1755-1772.	0.7	9
68	Combining alternative processing methods for European soybeans to be used in broiler diets. Animal Feed Science and Technology, 2019, 253, 45-55.	1.1	9
69	Automated Classification for Visual-Only Postmortem Inspection of Porcine Pathology. IEEE Transactions on Automation Science and Engineering, 2020, 17, 1005-1016.	3.4	9
70	Comparing the environmental impacts of UK turkey production systems using analytical error propagation in uncertainty analysis. Journal of Cleaner Production, 2016, 112, 141-148.	4.6	8
71	Description, evaluation, and validation of the Teagasc Pig Production Model1. Journal of Animal Science, 2019, 97, 2803-2821.	0.2	8
72	Changes in the environmental impacts of pig production systems in Great Britain over the last 18Âyears. Agricultural Systems, 2021, 189, 103063.	3.2	8

#	Article	IF	CITATIONS
73	Starving for nutrients: anorexia during infection with parasites in broilers is affected by diet composition. Poultry Science, 2022, 101, 101535.	1.5	8
74	Environmental and economic consequences of pig-cooling strategies implemented in a European pig-fattening unit. Journal of Cleaner Production, 2021, 290, 125784.	4.6	7
75	Biosecurity levels of pig fattening farms from four EU countries and links with the farm characteristics. Livestock Science, 2020, 237, 104037.	0.6	7
76	Bayesian, Likelihood-Free Modelling of Phenotypic Plasticity and Variability in Individuals and Populations. Frontiers in Genetics, 2019, 10, 727.	1.1	6
77	A systematic literature mapping and meta-analysis of animal-based traits as indicators of production diseases in pigs. Animal, 2019, 13, 1508-1518.	1.3	6
78	Diagnosis of sub-clinical coccidiosis in fast growing broiler chickens by MicroRNA profiling. Genomics, 2020, 112, 3218-3225.	1.3	6
79	What are the limits to feed intake of broilers on bulky feeds?. Poultry Science, 2021, 100, 100825.	1.5	6
80	Farm characteristics affecting antibiotic consumption in pig farms in England. Porcine Health Management, 2022, 8, 7.	0.9	6
81	Modelling the impacts of pasture contamination and stocking rate for the development of targeted selective treatment strategies for Ostertagia ostertagi infection in calves. Veterinary Parasitology, 2017, 238, 82-86.	0.7	5
82	The genetic basis of novel water utilisation and drinking behaviour traits and their relationship with biological performance in turkeys. Genetics Selection Evolution, 2017, 49, 72.	1.2	5
83	Does the study of feeding behaviour benefit from a teleonomic framework?. Nutrition Research Reviews, 1998, 11, 223-229.	2.1	4
84	Multi-part segmentation for porcine offal inspection with auto-context and adaptive atlases. Pattern Recognition Letters, 2018, 112, 290-296.	2.6	4
85	Differential immune response toEimeria maximainfection in fast―and slowâ€growing broiler genotypes. Parasite Immunology, 2019, 41, e12660.	0.7	4
86	Accounting for spatial variability in life cycle cost-effectiveness assessments of environmental impact abatement measures. International Journal of Life Cycle Assessment, 2021, 26, 1236-1253.	2.2	4
87	Quantifying the Interrelationship between Livestock Infections and Climate Change: Response to Ezenwa et al Trends in Ecology and Evolution, 2021, 36, 576-577.	4.2	4
88	Differential gene response to coccidiosis in modern fast growing and slow growing broiler genotypes. Veterinary Parasitology, 2019, 268, 1-8.	0.7	3
89	Bayesian comparison of models for precision feeding and management in growing-finishing pigs. Biosystems Engineering, 2021, 211, 205-218.	1.9	3
90	Weighted atlas auto-context with application to multiple organ segmentation. , 2016, , .		2

#	Article	IF	CITATIONS
91	Vitamin D3, 25-Hydroxyvitamin D3, and Food Fortification. Journal of Nutrition, 2018, 148, 664-665.	1.3	2
92	Towards the prediction of feed intake capacity of modern broilers on bulky feeds. Poultry Science, 2021, 100, 101501.	1.5	2
93	Herbivore Physiological State Affects Foraging Trade-Off Decisions between Nutrient Intake and Parasite Avoidance. Ecology, 2001, 82, 1138.	1.5	2
94	Economic feasibility of interventions targeted at decreasing piglet perinatal and pre-weaning mortality across European countries. Porcine Health Management, 2022, 8, .	0.9	2
95	178 A systematic review and meta-analysis of Ca digestibility and utilisation in growing and finishing pigs. Journal of Animal Science, 2019, 97, 101-102.	0.2	0
96	The Influence of Vitamin a on Molecular Bio-mineral Tissue Development in Pigs (P02-012-19). Current Developments in Nutrition, 2019, 3, nzz029.P02-012-19.	0.1	0
97	PSIV-15 Development of a modelling framework to account for P kinetics in growing and finishing pigs. Journal of Animal Science, 2019, 97, 186-187.	0.2	0
98	Bacterial diseases in pigs and poultry: Occurrence, epidemiology, and biosecurity measures. , 2021, , 25-51.		0
99	A Novel Estimation of Unobserved Pig Growth Traits for the Purposes of Precision Feeding Methods. Frontiers in Veterinary Science, 2021, 8, 689206.	0.9	0
100	Quantifying the contribution of livestock health issues to the environmental impact of their production systems. Burleigh Dodds Series in Agricultural Science, 2021, , 81-114.	0.1	0
101	Mastitis and animal husbandry – high-throughput sequencing as a support tool. Access Microbiology, 2019, 1, .	0.2	0
102	Deep Learning Pose Estimation for Multi-Cattle Lameness Detection. SSRN Electronic Journal, 0, , .	0.4	0