
Sitakanta Pattanaik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1294201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virus-Induced Gene Silencing as a Tool to Study Regulation of Alkaloid Biosynthesis in Medicinal Plants. Methods in Molecular Biology, 2022, 2469, 155-164.	0.9	3
2	Identification and Characterization of Transcription Factors Regulating Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Methods in Molecular Biology, 2022, , 203-221.	0.9	2
3	Protein phosphatase NtPP2C2b and MAP kinase NtMPK4 act in concert to modulate nicotine biosynthesis. Journal of Experimental Botany, 2021, 72, 1661-1676.	4.8	12
4	<i>BHLH IRIDOID SYNTHESIS 3</i> is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in <i>Catharanthus roseus</i> . Plant Direct, 2021, 5, e00305.	1.9	25
5	Reprogramming plant specialized metabolism by manipulating protein kinases. ABIOTECH, 2021, 2, 226-239.	3.9	5
6	Terpenoid indole alkaloid biosynthesis in Catharanthus roseus: effects and prospects of environmental factors in metabolic engineering. Biotechnology Letters, 2021, 43, 2085-2103.	2.2	14
7	TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR4 Interacts with WRINKLED1 to Mediate Seed Oil Biosynthesis. Plant Physiology, 2020, 184, 658-665.	4.8	29
8	Maleic hydrazide elicits global transcriptomic changes in chemically topped tobacco to influence shoot bud development. Planta, 2020, 252, 64.	3.2	3
9	Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Science, 2020, 293, 110408.	3.6	50
10	Mutually Regulated AP2/ERF Gene Clusters Modulate Biosynthesis of Specialized Metabolites in Plants. Plant Physiology, 2020, 182, 840-856.	4.8	54
11	GATA and Phytochrome Interacting Factor Transcription Factors Regulate Light-Induced Vindoline Biosynthesis in <i>Catharanthus roseus</i> . Plant Physiology, 2019, 180, 1336-1350.	4.8	61
12	Genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization. Planta, 2018, 248, 171-182.	3.2	10
13	A network of jasmonateâ€responsive bHLH factors modulate monoterpenoid indole alkaloid biosynthesis in <i>Catharanthus roseus</i> . New Phytologist, 2018, 217, 1566-1581.	7.3	81
14	Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis. Journal of Experimental Botany, 2018, 69, 4267-4281.	4.8	43
15	The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis. Scientific Reports, 2017, 7, 43027.	3.3	39
16	A differentially regulated <scp>AP</scp> 2/ <scp>ERF</scp> transcription factor gene cluster acts downstream of a <scp>MAP</scp> kinase cascade to modulate terpenoid indole alkaloid biosynthesis in <i>Catharanthus roseus</i> . New Phytologist, 2017, 213, 1107-1123.	7.3	157
17	Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation. Frontiers in Plant Science, 2016, 7, 1498.	3.6	10
18	RNA-sequencing Reveals Global Transcriptomic Changes in Nicotiana tabacum Responding to Topping and Treatment of Axillary-shoot Control Chemicals. Scientific Reports, 2016, 5, 18148.	3.3	29

SITAKANTA PATTANAIK

#	Article	IF	CITATIONS
19	Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development. Scientific Reports, 2016, 6, 18645.	3.3	48
20	Efficient Agrobacterium-mediated transformation of Artemisia annua L. using young inflorescence. In Vitro Cellular and Developmental Biology - Plant, 2016, 52, 204-211.	2.1	5
21	Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta, 2015, 242, 283-293.	3.2	152
22	An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Frontiers in Plant Science, 2014, 5, 259.	3.6	216
23	Efficient chimeric plant promoters derived from plant infecting viral promoter sequences. Planta, 2014, 239, 381-396.	3.2	42
24	Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling. BMC Genomics, 2014, 15, 502.	2.8	99
25	Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1236-1247.	1.9	268
26	Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus. Planta, 2013, 238, 1039-1049.	3.2	27
27	Proteolytic degradation of the flavonoid regulators, TRANSPARENT TESTA8 and TRANSPARENT TESTA GLABRA1, in <i>Arabidopsis</i> is mediated by the ubiquitin/26Sproteasome system. Plant Signaling and Behavior, 2013, 8, e25901.	2.4	16
28	Ubiquitin protein ligase 3 mediates the proteasomal degradation of <scp>GLABROUS</scp> 3 and <scp>ENHANCER OF GLABROUS</scp> 3, regulators of trichome development and flavonoid biosynthesis in <scp>A</scp> rabidopsis. Plant Journal, 2013, 74, 435-447.	5.7	80
29	A R2R3-MYB Transcription Factor from Epimedium sagittatum Regulates the Flavonoid Biosynthetic Pathway. PLoS ONE, 2013, 8, e70778.	2.5	80
30	Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2091-7.	7.1	92
31	Directed Evolution Through DNA Shuffling for the Improvement and Understanding of Genes and Promoters. Methods in Molecular Biology, 2011, 754, 325-342.	0.9	4
32	Bimolecular Fluorescence Complementation as a Tool to Study Interactions of Regulatory Proteins in Plant Protoplasts. Methods in Molecular Biology, 2011, 754, 185-193.	0.9	6
33	Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active. Planta, 2011, 234, 363-375.	3.2	93
34	The Transcription Factor CrWRKY1 Positively Regulates the Terpenoid Indole Alkaloid Biosynthesis in <i>Catharanthus roseus</i> Â Â Â. Plant Physiology, 2011, 157, 2081-2093.	4.8	340
35	Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta, 2010, 231, 1061-1076.	3.2	143
36	Site-Directed Mutagenesis and Saturation Mutagenesis for the Functional Study of Transcription Factors Involved in Plant Secondary Metabolite Biosynthesis. Methods in Molecular Biology, 2010, 643, 47-57.	0.9	17

SITAKANTA PATTANAIK

#	Article	IF	CITATIONS
37	The interaction domains of the plant Myc-like bHLH transcription factors can regulate the transactivation strength. Planta, 2008, 227, 707-715.	3.2	63
38	Plant peptide deformylase: a novel selectable marker and herbicide target based on essential cotranslational chloroplast protein processing. Plant Biotechnology Journal, 2007, 5, 275-281.	8.3	21
39	Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 139-148.	2.4	46
40	Directed evolution of plant basic helix–loop–helix transcription factors for the improvement of transactivational properties. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 308-318.	2.4	20
41	Effect of Ion and Surfactant Choice on the Recovery of a Histidine-Tagged Protein From Tobacco Extract Using Foam Fractionation. Applied Biochemistry and Biotechnology, 2004, 119, 79-92.	2.9	3
42	Isolation of full-length transcript promoter from the Strawberry vein banding virus (SVBV) and expression analysis by protoplasts transient assays and in transgenic plants. Plant Science, 2004, 167, 427-427.	3.6	0
43	Isolation of full-length transcript promoter from the Strawberry vein banding virus (SVBV) and expression analysis by protoplasts transient assays and in transgenic plants. Plant Science, 2004, 167, 427-438.	3.6	35
44	Intron-mediated enhancement of gene expression in transgenic plants using chimeric constructs composed of the Peanut chlorotic streak virus (PCISV) promoter?leader and the antisense orientation of PCISV ORFi¿½VII (p7R). Planta, 2003, 218, 115-124.	3.2	25
45	Antibiosis-type insect resistance in transgenic plants expressing a teratocyte secretory protein (TSP14) gene from a hymenopteran endoparasite (Microplitis croceipes). Plant Biotechnology Journal, 2003, 1, 209-219.	8.3	36
46	Histidine Tagged Protein Recovery from Tobacco Extract by Foam Fractionation. Biotechnology Progress, 2003, 19, 680-682.	2.6	25