Mayte Montero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1294129/publications.pdf

Version: 2024-02-01

60 papers

2,829 citations

218677 26 h-index 52 g-index

64 all docs

64
docs citations

64 times ranked 2585 citing authors

#	Article	IF	CITATIONS
1	Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nature Cell Biology, 2000, 2, 57-61.	10.3	444
2	Ca2+-induced Ca2+ Release in Chromaffin Cells Seen from inside the ER with Targeted Aequorin. Journal of Cell Biology, 1999, 144, 241-254.	5.2	170
3	Dynamics of [Ca2+] in the Endoplasmic Reticulum and Cytoplasm of Intact HeLa Cells. Journal of Biological Chemistry, 1997, 272, 27694-27699.	3.4	136
4	Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochemical Journal, 2004, 384, 19-24.	3.7	128
5	Cytochrome P450 may regulate plasma membrane Ca 2+ permeability according to the filling state of the intracellular Ca 2+ stores. FASEB Journal, 1992, 6, 786-792.	0.5	122
6	Redistribution of Ca2+among cytosol and organella during stimulation of bovine chromaffin cells. FASEB Journal, 2002, 16, 343-353.	0.5	114
7	Ca2+ Homeostasis in the Endoplasmic Reticulum: Coexistence of High and Low [Ca2+] Subcompartments in Intact HeLa Cells. Journal of Cell Biology, 1997, 139, 601-611.	5.2	110
8	Measuring [Ca2+] in the endoplasmic reticulum with aequorin. Cell Calcium, 2002, 32, 251-260.	2.4	102
9	Mitochondrial Ca ²⁺ -induced Ca ²⁺ Release Mediated by the Ca ²⁺ Uniporter. Molecular Biology of the Cell, 2001, 12, 63-71.	2.1	84
10	The plasma membrane Na+ /Ca2+ exchange inhibitor KB-R7943 is also a potent inhibitor of the mitochondrial Ca2+ uniporter. British Journal of Pharmacology, 2007, 151, 647-654.	5.4	82
11	[Ca ²⁺] Microdomains control agonistâ€induced Ca ²⁺ release in intact HeLa cells. FASEB Journal, 1997, 11, 881-885.	0.5	79
12	A novel regulatory mechanism of the mitochondrial Ca 2+ uniporter revealed by the p38 mitogenâ€activated protein kinase inhibitor sb202190. FASEB Journal, 2002, 16, 1955-1957.	0.5	77
13	Functional measurements of [Ca2+] in the endoplasmic reticulum using a herpes virus to deliver targeted aequorin. Cell Calcium, 1998, 24, 87-96.	2.4	73
14	Monitoring mitochondrial [Ca2+] dynamics with rhod-2, ratiometric pericam and aequorin. Cell Calcium, 2010, 48, 61-69.	2.4	65
15	Targeting aequorin and green fluorescent protein to intracellular organelles. Gene, 1996, 173, 113-117.	2.2	61
16	The mitochondrial Na+/Ca2+ exchanger plays a key role in the control of cytosolic Ca2+ oscillations. Cell Calcium, 2006, 40, 53-61.	2.4	59
17	Modulation of Ca2+release and Ca2+oscillations in HeLa cells and fibroblasts by mitochondrial Ca2+uniporter stimulation. Journal of Physiology, 2007, 580, 39-49.	2.9	48
18	Modulation of mitochondrial Ca2+ uptake by estrogen receptor agonists and antagonists. British Journal of Pharmacology, 2005, 145, 862-871.	5.4	46

#	Article	IF	Citations
19	Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules. European Journal of Neuroscience, 2008, 28, 1265-1274.	2.6	46
20	Functional roles of MICU1 and MICU2 in mitochondrial Ca 2+ uptake. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1110-1117.	2.6	46
21	Mitochondrial free [Ca2+] dynamics measured with a novel low-Ca2+ affinity aequorin probe. Biochemical Journal, 2012, 445, 371-376.	3.7	45
22	Effects of extremely-law-frequency electromagnetic fields on ion transport in several mammalian cells. Bioelectromagnetics, 1994, 15, 579-588.	1.6	43
23	Ca2+ homeostasis in the endoplasmic reticulum measured with a new low-Ca2+-affinity targeted aequorin. Cell Calcium, 2013, 54, 37-45.	2.4	41
24	Calcium dynamics in catecholamine-containing secretory vesicles. Cell Calcium, 2005, 37, 555-564.	2.4	38
25	Dynamics of mitochondrial Ca2+ uptake in MICU1-knockdown cells. Biochemical Journal, 2014, 458, 33-40.	3.7	35
26	Comparative effects of cytochrome P-450 inhibitors on Ca2+ and Mn2+ entry induced by agonists or by emptying the Ca2+ stores of human neutrophils. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1177, 127-133.	4.1	33
27	The Role of Ca2+ Signaling in Aging and Neurodegeneration: Insights from Caenorhabditis elegans Models. Cells, 2020, 9, 204.	4.1	33
28	Modulation of Histamine-induced Ca2+ Release by Protein Kinase C. Journal of Biological Chemistry, 2003, 278, 49972-49979.	3.4	27
29	Calcium signalling mediated through α7 and nonâ€Î±7 nAChR stimulation is differentially regulated in bovine chromaffin cells to induce catecholamine release. British Journal of Pharmacology, 2011, 162, 94-110.	5.4	27
30	Calcineurin-independent inhibition of mitochondrial Ca2+ uptake by cyclosporin A. British Journal of Pharmacology, 2004, 141, 263-268.	5.4	24
31	Mitochondrial free [Ca2+] levels and the permeability transition. Cell Calcium, 2009, 45, 243-250.	2.4	24
32	Secretory Phospholipase A2 Induces Phospholipase \hat{Cl}^3 -1 Activation and Ca2+ Mobilization in the Human Astrocytoma Cell Line 1321N1 by a Mechanism Independent of Its Catalytic Activity. Biochemical and Biophysical Research Communications, 1999, 260, 99-104.	2.1	23
33	Modulation of secretion by the endoplasmic reticulum in mouse chromaffin cells. European Journal of Neuroscience, 2002, 16, 1690-1696.	2.6	23
34	Control of secretion by mitochondria depends on the size of the local [Ca2+] after chromaffin cell stimulation. European Journal of Neuroscience, 2001, 13, 2247-2254.	2.6	21
35	Stimulation by thimerosal of histamine-induced Ca2+release in intact HeLa cells seen with aequorin targeted to the endoplasmic reticulum. Cell Calcium, 2001, 30, 181-190.	2.4	20
36	Effect of inositol 1,4,5-trisphosphate receptor stimulation on mitochondrial [Ca2+] and secretion in chromaffin cells. Biochemical Journal, 2002, 365, 451-459.	3.7	20

#	Article	IF	Citations
37	Modulation of Calcium Entry by Mitochondria. Advances in Experimental Medicine and Biology, 2016, 898, 405-421.	1.6	18
38	Inhibition of Sarco-Endoplasmic Reticulum Ca2+ ATPase Extends the Lifespan in C. elegans Worms. Frontiers in Pharmacology, 2018, 9, 669.	3.5	18
39	Functional Characterization of Three Concomitant MtDNA LHON Mutations Shows No Synergistic Effect on Mitochondrial Activity. PLoS ONE, 2016, 11, e0146816.	2.5	17
40	Effects of Long-Term Feeding of the Polyphenols Resveratrol and Kaempferol in Obese Mice. PLoS ONE, 2014, 9, e112825.	2.5	16
41	Mitochondrial Ca2+ Dynamics in MCU Knockout C. elegans Worms. International Journal of Molecular Sciences, 2020, 21, 8622.	4.1	15
42	Agonist-induced Ca2+ influx in human neutrophils is not mediated by production of inositol polyphosphates but by emptying of the intracellular Ca2+ stores. Biochemical Society Transactions, 1994, 22, 809-813.	3.4	14
43	Dynamics of mitochondrial [Ca2+] measured with the low-Ca2+-affinity dye rhod-5N. Cell Calcium, 2012, 51, 65-71.	2.4	14
44	Long-term monitoring of Ca2+ dynamics in <i>C. elegans</i> pharynx: an <i>in vivo</i> energy balance sensor. Oncotarget, 2016, 7, 67732-67747.	1.8	13
45	The dynamics of mitochondrial Ca2+ fluxes. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1727-1735.	1.0	12
46	Measurement of â€~in situ' mitochondrial membrane potential in Ehrlich ascites tumor cells during aerobic glycolysis. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 935, 322-332.	1.0	11
47	Pharynx mitochondrial [Ca2+] dynamics in live <i>C. elegans</i> worms during aging. Oncotarget, 2017, 8, 55889-55900.	1.8	11
48	Ca2+ influx following receptor activation. Trends in Pharmacological Sciences, 1992, 13, 12-13.	8.7	10
49	A confocal study on the visualization of chromaffin cell secretory vesicles with fluorescent targeted probes and acidic dyes. Journal of Structural Biology, 2010, 172, 261-269.	2.8	10
50	The pathway for refilling intracellular Ca2+ stores passes through the cytosol in human leukaemia cells. Pflugers Archiv European Journal of Physiology, 1993, 424, 465-469.	2.8	9
51	The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na ⁺ /Ca ²⁺ exchanger. Journal of Physiology, 2017, 595, 2129-2146.	2.9	9
52	The Neuroprotector Benzothiazepine CGP37157 Extends Lifespan in C. elegans Worms. Frontiers in Aging Neuroscience, 2018, 10, 440.	3.4	9
53	Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release from the endoplasmic reticulum by AMP-activated kinase modulators. Cell Calcium, 2019, 77, 68-76.	2.4	9
54	Subcellular Ca ²⁺ Dynamics. Physiology, 1999, 14, 161-168.	3.1	8

#	Article	IF	CITATION
55	Ca2+ Dynamics in the Secretory Vesicles of Neurosecretory PC12 and INS1 Cells. Cellular and Molecular Neurobiology, 2010, 30, 1267-1274.	3.3	7
56	Novel antimigraineur dotarizine releases Ca2+ from caffeine-sensitive Ca2+ stores of chromaffin cells. British Journal of Pharmacology, 1999, 128, 621-626.	5.4	6
57	Subcellular Ca ²⁺ Dynamics Measured with Targeted Aequorin in Chromaffin Cells. Annals of the New York Academy of Sciences, 2002, 971, 634-640.	3.8	5
58	Mechanism of the lifespan extension induced by submaximal SERCA inhibition in C. elegans. Mechanisms of Ageing and Development, 2021, 196, 111474.	4.6	5
59	Agonist-evoked Ca2+ entry in human platelets: a reply. Biochemical Journal, 1992, 285, 343-344.	3.7	4
60	The Mitochondrial Na+/Ca2+ Exchanger Inhibitor CGP37157 Preserves Muscle Structure and Function to Increase Lifespan and Healthspan in Caenorhabditis elegans. Frontiers in Pharmacology, 2021, 12, 695687.	3.5	4