Jordi B Torrelles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1294093/publications.pdf

Version: 2024-02-01

172457 155660 3,558 61 29 55 citations h-index g-index papers 73 73 73 5099 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selective delipidation of Mycobacterium bovis BCG retains antitumor efficacy against non-muscle invasive bladder cancer. Cancer Immunology, Immunotherapy, 2023, 72, 125-136.	4.2	2
2	The K18-Human ACE2 Transgenic Mouse Model Recapitulates Non-severe and Severe COVID-19 in Response to an Infectious Dose of the SARS-CoV-2 Virus. Journal of Virology, 2022, 96, JVI0096421.	3.4	84
3	Host- and Age-Dependent Transcriptional Changes in Mycobacterium tuberculosis Cell Envelope Biosynthesis Genes after Exposure to Human Alveolar Lining Fluid. International Journal of Molecular Sciences, 2022, 23, 983.	4.1	6
4	The Impact of Aging on the Lung Alveolar Environment, Predetermining Susceptibility to Respiratory Infections. Frontiers in Aging, 2022, 3, .	2.6	6
5	Evaluating Antibody Mediated Protection against Alpha, Beta, and Delta SARS-CoV-2 Variants of Concern in K18-hACE2 Transgenic Mice. Journal of Virology, 2022, 96, jvi0218421.	3.4	14
6	IL-10 Receptor Blockade Delivered Simultaneously with Bacillus Calmette–Guérin Vaccination Sustains Long-Term Protection against <i>Mycobacterium tuberculosis</i> Infection in Mice. Journal of Immunology, 2022, 208, 1406-1416.	0.8	6
7	The Aging Human Lung Mucosa: A Proteomics Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1969-1974.	3.6	3
8	Animal Models of COVID-19: Transgenic Mouse Model. Methods in Molecular Biology, 2022, 2452, 259-289.	0.9	14
9	Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. International Journal of Molecular Sciences, 2021, 22, 735.	4.1	20
10	Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Frontiers in Microbiology, 2021, 12, 612675.	3 . 5	103
11	Zoonotic Tuberculosis – The Changing Landscape. International Journal of Infectious Diseases, 2021, 113, S68-S72.	3.3	29
12	New Developments and Insights in the Improvement of Mycobacterium tuberculosis Vaccines and Diagnostics Within the End TB Strategy. Current Epidemiology Reports, 2021, 8, 33-45.	2.4	8
13	Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. Journal of Virology, 2021, 95, e0040221.	3.4	97
14	A Bifluorescent-Based Assay for the Identification of Neutralizing Antibodies against SARS-CoV-2 Variants of Concern <i>In Vitro</i> and <i>In Vivo</i> Journal of Virology, 2021, 95, e0112621.	3.4	13
15	Analysis of SARS-CoV-2 infection dynamic in vivo using reporter-expressing viruses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
16	Acute Inflammation Confers Enhanced Protection against Mycobacterium tuberculosis Infection in Mice. Microbiology Spectrum, 2021, 9, e0001621.	3.0	3
17	Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nature Microbiology, 2021, 6, 73-86.	13.3	156
18	Effects of Mycobacterium bovis Calmette et Guérin (BCG) in oncotherapy: Bladder cancer and beyond. Vaccine, 2021, 39, 7332-7340.	3.8	13

#	Article	IF	CITATIONS
19	Alveolar Epithelial Cells., 2021,, 247-255.		1
20	MDR/XDR-TB Colour Test for drug susceptibility testing of Mycobacterium tuberculosis, Northwest Ethiopia. International Journal of Infectious Diseases, 2020, 90, 213-218.	3.3	5
21	Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nature Communications, 2020, 11, 6122.	12.8	304
22	Accuracy of the tuberculosis point-of-care Alere determine lipoarabinomannan antigen diagnostic test using α-mannosidase treated and untreated urine in a cohort of people living with HIV in Guatemala. AIDS Research and Therapy, 2020, 17, 62.	1.7	4
23	Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. Journal of Experimental Medicine, 2020, 217, .	8.5	90
24	Zoonotic tuberculosis—a call for an open One Health debate. Lancet Infectious Diseases, The, 2020, 20, 642-644.	9.1	6
25	Accuracy of Two Point-of-Care Tests for Rapid Diagnosis of Bovine Tuberculosis at Animal Level using Non-Invasive Specimens. Scientific Reports, 2020, 10, 5441.	3.3	11
26	Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2019, 203, 2252-2264.	0.8	57
27	Evaluation of the tuberculosis culture color plate test for rapid detection of drug susceptible and drug-resistant Mycobacterium tuberculosis in a resource-limited setting, Addis Ababa, Ethiopia. PLoS ONE, 2019, 14, e0215679.	2.5	10
28	The Lung Mucosa Environment in the Elderly Increases Host Susceptibility to Mycobacterium tuberculosis Infection. Journal of Infectious Diseases, 2019, 220, 514-523.	4.0	45
29	Selective delipidation of Mycobacterium bovis BCG enables direct pulmonary vaccination and enhances protection against Mycobacterium tuberculosis. Mucosal Immunology, 2019, 12, 805-815.	6.0	26
30	Underestimated Manipulative Roles of Mycobacterium tuberculosis Cell Envelope Glycolipids During Infection. Frontiers in Immunology, 2019, 10, 2909.	4.8	50
31	Improved Alere Determine Lipoarabinomannan Antigen Detection Test for the Diagnosis of Human and Bovine Tuberculosis by Manipulating Urine and Milk. Scientific Reports, 2019, 9, 18012.	3.3	18
32	Evaluation of Mycobacterium tuberculosis lipoarabinomannan antigen assay and rapid serology blood test for the diagnosis of bovine tuberculosis in Ethiopia. BMC Veterinary Research, 2019, 15, 359.	1.9	2
33	Mannose-capped lipoarabinomannan in Mycobacterium tuberculosis pathogenesis. Pathogens and Disease, 2018, 76, .	2.0	68
34	Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nature Microbiology, 2018, 3, 1099-1108.	13.3	90
35	Low-cost diagnostic test for susceptible and drug-resistant tuberculosis in rural Malawi. African Journal of Laboratory Medicine, 2018, 7, 690.	0.6	9
36	Integrating Lung Physiology, Immunology, and Tuberculosis. Trends in Microbiology, 2017, 25, 688-697.	7.7	104

#	Article	lF	CITATIONS
37	Modifications of Pseudomonas aeruginosa cell envelope in the cystic fibrosis airway alters interactions with immune cells. Scientific Reports, 2017, 7, 4761.	3.3	9
38	Mycobacterium tuberculosis Cell Wall Fragments Released upon Bacterial Contact with the Human Lung Mucosa Alter the Neutrophil Response to Infection. Frontiers in Immunology, 2017, 8, 307.	4.8	33
39	Immune Responses to Bacillus Calmette–Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis?. Frontiers in Immunology, 2017, 8, 407.	4.8	116
40	Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth. PLoS Pathogens, 2017, 13, e1006515.	4.7	46
41	Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology, 2017, 14, 45.	2.0	36
42	Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Archives of Virology, 2016, 161, 1579-1589.	2.1	18
43	Polyphosphate and associated enzymes as global regulators of stress response and virulence in <i>Campylobacter jejuni</i> World Journal of Gastroenterology, 2016, 22, 7402.	3.3	20
44	Lung Mucosa Lining Fluid Modification of <i>Mycobacterium tuberculosis </i> to Reprogram Human Neutrophil Killing Mechanisms. Journal of Infectious Diseases, 2015, 212, 948-958.	4.0	42
45	Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: Why does BCG fail to protect against tuberculosis?. Vaccine, 2015, 33, 5035-5041.	3.8	75
46	Functional characterization of exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) of <i>Campylobacter jejuni </i> Virulence, 2014, 5, 521-533.	4.4	31
47	Characterization of lung inflammation and its impact on macrophage function in aging. Journal of Leukocyte Biology, 2014, 96, 473-480.	3.3	87
48	Molecular composition of the alveolar lining fluid in the aging lung. Age, 2014, 36, 9633.	3.0	94
49	Changes in the major cell envelope components of Mycobacterium tuberculosis during in vitro growth. Glycobiology, 2013, 23, 926-934.	2.5	18
50	Isolation of a distinct Mycobacterium tuberculosis mannose-capped lipoarabinomannan isoform responsible for recognition by CD1b-restricted T cells. Glycobiology, 2012, 22, 1118-1127.	2.5	46
51	Human Lung Hydrolases Delineate <i>Mycobacterium tuberculosis</i> Àe"Macrophage Interactions and the Capacity To Control Infection. Journal of Immunology, 2011, 187, 372-381.	0.8	71
52	Structural Differences in Lipomannans from Pathogenic and Nonpathogenic Mycobacteria That Impact CD1b-restricted T Cell Responses*. Journal of Biological Chemistry, 2011, 286, 35438-35446.	3.4	29
53	<i>Mycobacterium tuberculosis</i> li>lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17408-17413.	7.1	255
54	Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis, 2010, 90, 84-93.	1.9	127

#	Article	IF	CITATION
55	Inactivation of Mycobacterium tuberculosis mannosyltransferase pimB reduces the cell wall lipoarabinomannan and lipomannan content and increases the rate of bacterial-induced human macrophage cell death. Glycobiology, 2009, 19, 743-755.	2.5	41
56	Identification of Mycobacterium tuberculosis Clinical Isolates with Altered Phagocytosis by Human Macrophages Due to a Truncated Lipoarabinomannan. Journal of Biological Chemistry, 2008, 283, 31417-31428.	3.4	60
57	Fine Discrimination in the Recognition of Individual Species of Phosphatidyl- <i>myo</i> -lnositol Mannosides from <i>Mycobacterium tuberculosis</i> by C-Type Lectin Pattern Recognition Receptors. Journal of Immunology, 2006, 177, 1805-1816.	0.8	173
58	Overexpression of Mycobacterium tuberculosis manB, a phosphomannomutase that increases phosphatidylinositol mannoside biosynthesis in Mycobacterium smegmatisand mycobacterial association with human macrophages. Molecular Microbiology, 2005, 58, 774-790.	2.5	47
59	The human macrophage mannose receptor directs <i>Mycobacterium tuberculosis</i> lipoarabinomannan-mediated phagosome biogenesis. Journal of Experimental Medicine, 2005, 202, 987-999.	8.5	457
60	Truncated Structural Variants of Lipoarabinomannan in Mycobacterium leprae and an Ethambutol-resistant Strain of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2004, 279, 41227-41239.	3.4	64
61	Tuberculosis Phenotypic and Genotypic Drug Susceptibility Testing and Immunodiagnostics: A Review. Frontiers in Immunology, 0, 13, .	4.8	8