
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1293680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combinations of deletion and missense variations of the dynein-2 DYNC2LI1 subunit found in skeletal ciliopathies cause ciliary defects. Scientific Reports, 2022, 12, 31.	1.6	4
2	Impaired cooperation between IFT74/BBS22–IFT81 and IFT25–IFT27/BBS19 causes Bardet-Biedl syndrome. Human Molecular Genetics, 2022, 31, 1681-1693.	1.4	24
3	Cooperation of the IFT-A complex with the IFT-B complex is required for ciliary retrograde protein trafficking and GPCR import. Molecular Biology of the Cell, 2021, 32, 45-56.	0.9	41
4	The interaction of ATP11C-b with ezrin contributes to its polarized localization. Journal of Cell Science, 2021, 134, .	1.2	4
5	ARL3 and ARL13B GTPases participate in distinct steps of INPP5E targeting to the ciliary membrane. Biology Open, 2021, 10, .	0.6	14
6	Molecular basis of ciliary defects caused by compound heterozygous <i>IFT144</i> / <i>WDR19</i> mutations found in cranioectodermal dysplasia. Human Molecular Genetics, 2021, 30, 213-225.	1.4	19
7	Interaction of INPP5E with ARL13B is essential for its ciliary membrane retention but dispensable for its ciliary entry. Biology Open, 2021, 10, .	0.6	23
8	CCRK/CDK20 regulates ciliary retrograde protein trafficking via interacting with BROMI/TBC1D32. PLoS ONE, 2021, 16, e0258497.	1.1	4
9	ATPase reaction cycle of P4â€ATPases affects their transport from the endoplasmic reticulum. FEBS Letters, 2020, 594, 412-423.	1.3	13
10	Formation of the B9-domain protein complex MKS1–B9D2–B9D1 is essential as a diffusion barrier for ciliary membrane proteins. Molecular Biology of the Cell, 2020, 31, 2259-2268.	0.9	17
11	Practical method for superresolution imaging of primary cilia and centrioles by expansion microscopy using an amplibody for fluorescence signal amplification. Molecular Biology of the Cell, 2020, 31, 2195-2206.	0.9	20
12	Anterograde trafficking of ciliary MAP kinase–like ICK/CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. Journal of Biological Chemistry, 2020, 295, 13363-13376.	1.6	21
13	Architecture of the IFT ciliary trafficking machinery and interplay between its components. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 179-196.	2.3	56
14	The N- or C-terminal cytoplasmic regions of P4-ATPases determine their cellular localization. Molecular Biology of the Cell, 2020, 31, 2115-2124.	0.9	17
15	C-terminal cytoplasmic region of ATP11C variant determines its localization at the polarized plasma membrane. Journal of Cell Science, 2019, 132, .	1.2	6
16	Requirement of IFT-B–BBSome complex interaction in export of GPR161 from cilia. Biology Open, 2019, 8,	0.6	38
17	C11ORF74 interacts with the IFT-A complex and participates in ciliary BBSome localization. Journal of Biochemistry, 2019, 165, 257-267.	0.9	12
18	Interactions of the dynein-2 intermediate chain WDR34 with the light chains are required for ciliary retrograde protein trafficking. Molecular Biology of the Cell, 2019, 30, 658-670.	0.9	38

#	Article	IF	CITATIONS
19	Robust interaction of IFT70 with IFT52–IFT88 in the IFT-B complex is required for ciliogenesis. Biology Open, 2018, 7, .	0.6	33
20	Ciliary protein trafficking mediated by IFT and BBSome complexes with the aid of kinesin-2 and dynein-2 motors. Journal of Biochemistry, 2018, 163, 155-164.	0.9	100
21	Ciliopathy-associated mutations of IFT122 impair ciliary protein trafficking but not ciliogenesis. Human Molecular Genetics, 2018, 27, 516-528.	1.4	46
22	Phospholipidâ€flipping activity of P4― <scp>ATP</scp> ase drives membrane curvature. EMBO Journal, 2018, 37, .	3.5	41
23	Interaction of WDR60 intermediate chain with TCTEX1D2 light chain of the dynein-2 complex is crucial for ciliary protein trafficking. Molecular Biology of the Cell, 2018, 29, 1628-1639.	0.9	42
24	Interaction of heterotrimeric kinesin-II with IFT-B–connecting tetramer is crucial for ciliogenesis. Journal of Cell Biology, 2018, 217, 2867-2876.	2.3	50
25	BBS1 is involved in retrograde trafficking of ciliary GPCRs in the context of the BBSome complex. PLoS ONE, 2018, 13, e0195005.	1.1	56
26	Visible Immunoprecipitation (VIP) Assay: a Simple and Versatile Method for Visual Detection of Protein-protein Interactions. Bio-protocol, 2018, 8, e2687.	0.2	23
27	Regulation of ciliary retrograde protein trafficking by Joubert syndrome proteins ARL13B and INPP5E. Journal of Cell Science, 2017, 130, 563-576.	1.2	69
28	Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46–IFT56 as well as on its nuclear localization signal. Molecular Biology of the Cell, 2017, 28, 624-633.	0.9	50
29	Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system. Molecular Biology of the Cell, 2017, 28, 898-906.	0.9	73
30	RABL2 interacts with the intraflagellar transport-B complex and CEP19 and participates in ciliary assembly. Molecular Biology of the Cell, 2017, 28, 1652-1666.	0.9	74
31	Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein–coupled receptors. Molecular Biology of the Cell, 2017, 28, 429-439.	0.9	110
32	Phospholipid flippase ATP11C is endocytosed and downregulated following Ca2+-mediated protein kinase C activation. Nature Communications, 2017, 8, 1423.	5.8	44
33	Alteration of transbilayer phospholipid compositions is involved in cell adhesion, cell spreading, and focal adhesion formation. FEBS Letters, 2016, 590, 2138-2145.	1.3	13
34	The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane. Molecular Biology of the Cell, 2016, 27, 3883-3893.	0.9	52
35	Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex. Journal of Biological Chemistry, 2016, 291, 10962-10975.	1.6	111
36	Modulation of primary cilia length by melanin-concentrating hormone receptor 1. Cellular Signalling, 2016, 28, 572-584.	1.7	44

#	Article	IF	CITATIONS
37	Regulation of cytokinesis by membrane trafficking involving small GTPases and the ESCRT machinery. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 1-6.	2.3	21
38	Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis. Journal of Biochemistry, 2016, 159, 201-208.	0.9	19
39	<scp>GM</scp> 130 is a parallel tetramer with a flexible rodâ€like structure and N–terminally open (Yâ€shaped) and closed (lâ€shaped) conformations. FEBS Journal, 2015, 282, 2232-2244.	2.2	22
40	Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics. Journal of Biological Chemistry, 2015, 290, 15004-15017.	1.6	72
41	ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells. Journal of Lipid Research, 2015, 56, 2151-2157.	2.0	16
42	ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner Journal of Biological Chemistry, 2015, 290, 886.	1.6	1
43	COPI-mediated retrieval of SCAP is critical for regulating lipogenesis under basal and sterol-deficient conditions. Journal of Cell Science, 2015, 128, 2805-15.	1.2	11
44	Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. Journal of Cell Science, 2015, 128, 2351-2362.	1.2	149
45	SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles. Biology Open, 2015, 4, 910-920.	0.6	20
46	Phospholipid Flippase Activities and Substrate Specificities of Human Type IV P-type ATPases Localized to the Plasma Membrane. Journal of Biological Chemistry, 2014, 289, 33543-33556.	1.6	109
47	EFA6 activates Arf6 and participates in its targeting to the Flemming body during cytokinesis. FEBS Letters, 2013, 587, 1617-1623.	1.3	12
48	ARF1 and ARF4 regulate recycling endosomal morphology and retrograde transport from endosomes to the Golgi apparatus. Molecular Biology of the Cell, 2013, 24, 2570-2581.	0.9	81
49	Mitosis-Coupled, Microtubule-Dependent Clustering of Endosomal Vesicles around Centrosomes. Cell Structure and Function, 2013, 38, 31-41.	0.5	16
50	Structural Basis for Membrane Binding Specificity of the Bin/Amphiphysin/Rvs (BAR) Domain of Arfaptin-2 Determined by Arl1 GTPase. Journal of Biological Chemistry, 2012, 287, 25478-25489.	1.6	31
51	Mechanisms of Membrane Curvature Generation in Membrane Traffic. Membranes, 2012, 2, 118-133.	1.4	10
52	Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. Journal of Cell Science, 2012, 125, 4049-57.	1.2	232
53	Structural basis for Arf6-MKLP1 complex formation on the Flemming body responsible for cytokinesis. EMBO Journal, 2012, 31, 2590-2603.	3.5	55
54	ARF1 and ARF3 Are Required for the Integrity of Recycling Endosomes and the Recycling Pathway. Cell Structure and Function, 2012, 37, 141-154.	0.5	60

#	Article	IF	CITATIONS
55	GBF1-Arf-COPI-ArfGAP-mediated Golgi-to-ER Transport Involved in Regulation of Lipid Homeostasis. Cell Structure and Function, 2011, 36, 223-235.	0.5	25
56	Distinct roles of Rab11 and Arf6 in the regulation of Rab11â€FIP3/arfophilinâ€1 localization in mitotic cells. Genes To Cells, 2011, 16, 938-950.	0.5	31
57	Arfaptins Are Localized to the trans-Golgi by Interaction with Arl1, but Not Arfs. Journal of Biological Chemistry, 2011, 286, 11569-11578.	1.6	44
58	ATP9B, a P4-ATPase (a Putative Aminophospholipid Translocase), Localizes to the trans-Golgi Network in a CDC50 Protein-independent Manner. Journal of Biological Chemistry, 2011, 286, 38159-38167.	1.6	108
59	Functional Cross-Talk between Rab14 and Rab4 through a Dual Effector, RUFY1/Rabip4. Molecular Biology of the Cell, 2010, 21, 2746-2755.	0.9	62
60	Three Homologous ArfGAPs Participate in Coat Protein I-mediated Transport. Journal of Biological Chemistry, 2009, 284, 13948-13957.	1.6	34
61	Differential Effects of Depletion of ARL1 and ARFRP1 on Membrane Trafficking between the trans-Golgi Network and Endosomes. Journal of Biological Chemistry, 2009, 284, 10583-10592.	1.6	31
62	Redundant Roles of BIG2 and BIG1, Guanine-Nucleotide Exchange Factors for ADP-Ribosylation Factors in Membrane Traffic between the <i>trans</i> -Golgi Network and Endosomes. Molecular Biology of the Cell, 2008, 19, 2650-2660.	0.9	85
63	Recruitment of Tom1L1/Srcasm to Endosomes and the Midbody by Tsg101. Cell Structure and Function, 2008, 33, 91-100.	0.5	19
64	Molecular Basis for Autoregulatory Interaction Between GAE Domain and Hinge Region of GGA1. Traffic, 2007, 8, 904-913.	1.3	11
65	Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic. Experimental Cell Research, 2007, 313, 3472-3485.	1.2	56