Xie Wensheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1293305/publications.pdf

Version: 2024-02-01

489802 445137 1,405 34 18 33 citations h-index g-index papers 35 35 35 2535 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Synergetic Enhancement of Mechanical Properties for Silk Fibers by a Green Feeding Approach with Nano-hydroxyapatite/collagen Composite Additive. Journal of Natural Fibers, 2022, 19, 5310-5320.	1.7	3
2	Necroptosis-elicited host immunity: GOx-loaded MoS2 nanocatalysts for self-amplified chemodynamic immunotherapy. Nano Research, 2022, 15, 2244-2253.	5.8	11
3	Ultraâ€Sensitive Ironâ€Doped Palladium Nanocrystals with Enhanced Hydroxyl Radical Generation for Chemoâ€∤Chemodynamic Nanotherapy. Advanced Functional Materials, 2022, 32, 2107518.	7.8	22
4	Local Destruction of Tumors for Systemic Immunoresponse: Engineering Antigen-Capturing Nanoparticles as Stimulus-Responsive Immunoadjuvants. ACS Applied Materials & Diterfaces, 2022, 14, 4995-5008.	4.0	8
5	TME-responded Full-biodegradable nanocatalyst for mitochondrial calcium Overload-induced hydroxyl radical bursting cancer treatment. Chemical Engineering Journal, 2022, 438, 135372.	6.6	11
6	A Selfâ€Degradable Conjugated Polymer for Photodynamic Therapy with Reliable Postoperative Safety. Advanced Science, 2022, 9, e2104101.	5.6	44
7	Ultrafast Fabrication of Iron/Manganese Co-Doped Bismuth Trimetallic Nanoparticles: A Thermally Aided Chemodynamic/Radio-Nanoplatform for Low-Dose Radioresistance. ACS Applied Materials & Low-Interfaces, 2022, 14, 21931-21944.	4.0	4
8	Photoactivation-triggered in situ self-supplied H2O2 for boosting chemodynamic therapy via layered double Hydroxide-mediated catalytic cascade reaction. Chemical Engineering Journal, 2022, 446, 137310.	6.6	11
9	Galvanic replacement reaction for in situ fabrication of litchi-shaped heterogeneous liquid metal-Au nano-composite for radio-photothermal cancer therapy. Bioactive Materials, 2021, 6, 602-612.	8.6	43
10	Gold–iron selenide nanocomposites for amplified tumor oxidative stress-augmented photo-radiotherapy. Biomaterials Science, 2021, 9, 3979-3988.	2.6	15
11	Tannic acid-based metal phenolic networks for bio-applications: a review. Journal of Materials Chemistry B, 2021, 9, 4098-4110.	2.9	118
12	All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest, DNA damage, and ROS production as prostate cancer radiosensitizer for potential clinical translation. Nanoscale, 2021, 13, 14525-14537.	2.8	7
13	Ferrous ions doped layered double hydroxide: smart 2D nanotheranostic platform with imaging-guided synergistic chemo/photothermal therapy for breast cancer. Biomaterials Science, 2021, 9, 5928-5938.	2.6	17
14	Synthesis of a Thermalâ€Responsive Dualâ€Modal Supramolecular Probe for Magnetic Resonance Imaging and Fluorescence Imaging. Macromolecular Rapid Communications, 2021, 42, e2100248.	2.0	10
15	Hypoxia-Overcoming Breast-Conserving Treatment by Magnetothermodynamic Implant for a Localized Free-Radical Burst Combined with Hyperthermia. ACS Applied Materials & Enterfaces, 2021, 13, 35484-35493.	4.0	7
16	Metal-phenolic networks: facile assembled complexes for cancer theranostics. Theranostics, 2021, 11, 6407-6426.	4.6	63
17	Boron nitride/agarose hydrogel composites with high thermal conductivities. Rare Metals, 2020, 39, 375-382.	3.6	17
18	Manganese-Doped Layered Double Hydroxide: A Biodegradable Theranostic Nanoplatform with Tumor Microenvironment Response for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Applied Bio Materials, 2020, 3, 5845-5855.	2.3	27

#	Article	IF	CITATIONS
19	Magnetic Hydrogel with Optimally Adaptive Functions for Breast Cancer Recurrence Prevention. Advanced Healthcare Materials, 2019, 8, e1900203.	3.9	85
20	Nonâ€Magnetic Injectable Implant for Magnetic Fieldâ€Driven Thermochemotherapy and Dual Stimuliâ€Responsive Drug Delivery: Transformable Liquid Metal Hybrid Platform for Cancer Theranostics. Small, 2019, 15, e1900511.	5.2	65
21	Manganese-Based Magnetic Layered Double Hydroxide Nanoparticle: A pH-Sensitive and Concurrently Enhanced $<$ i> $>$ T $<$ i> $<$ sub> $>$ Ci> $>$ T $<$ i> $<$ sub> $>$ Ci> $>$ Cib> $>$ Cib> $>$ Cib> $>$ CibiCibiCibiCibiCibiCibiCibiCibiCibiCib	2.6	37
22	Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. Science China Life Sciences, 2018, 61, 448-456.	2.3	35
23	A theranostic nanocomposite system based on radial mesoporous silica hybridized with Fe ₃ O ₄ nanoparticles for targeted magnetic field responsive chemotherapy of breast cancer. RSC Advances, 2018, 8, 4321-4328.	1.7	30
24	Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. Nano Research, 2018, 11, 2470-2487.	5.8	50
25	In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber. International Journal of Biological Macromolecules, 2018, 109, 21-26.	3.6	34
26	A Fully Biodegradable Battery for Selfâ€Powered Transient Implants. Small, 2018, 14, e1800994.	5.2	113
27	Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8, 3284-3307.	4.6	272
28	Biodegradable Batteries: A Fully Biodegradable Battery for Self-Powered Transient Implants (Small) Tj ETQq0 0 0	rgBT/Ove	rlogk 10 Tf 50
29	General synthesis of high-performing magneto-conjugated polymer core–shell nanoparticles for multifunctional theranostics. Nano Research, 2017, 10, 704-717.	5. 8	26
30	Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Doxorubicin State of Cancer. ACS Applied Materials & Doxorubicin State o	4.0	150
31	Tetraphenylethylene- and fluorene-functionalized near-infrared aza-BODIPY dyes for living cell imaging. RSC Advances, 2017, 7, 55839-55845.	1.7	15
32	Melatonin potentiates & amp; Idquo; inside-out & amp; rdquo; nano-thermother apy in human breast cancer cells: a potential cancer target multimodality treatment based on melatonin-loaded nanocomposite particles. International Journal of Nanomedicine, 2017, Volume 12, 7351-7363.	3.3	15
33	Photoinduced Mild Hyperthermia and Synergistic Chemotherapy by One-Pot-Synthesized Docetaxel-Loaded Poly(lactic- <i>co</i> glycolic acid)/Polypyrrole Nanocomposites. ACS Applied Materials & Diterfaces, 2016, 8, 24445-24454.	4.0	37
34	A Family of Planar Luminogens with Active Photoluminescence in both Dispersion and Aggregation States. ChemPhotoChem, 0, , .	1.5	1