
Stuart B Mazzone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/129281/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Vagal Afferent Innervation of the Airways in Health and Disease. Physiological Reviews, 2016, 96, 975-1024.	13.1	365
2	ldentification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. Journal of Physiology, 2004, 557, 543-558.	1.3	354
3	Classification of Cough as a Symptom in Adults and Management Algorithms. Chest, 2018, 153, 196-209.	0.4	281
4	Treatment of Unexplained Chronic Cough. Chest, 2016, 149, 27-44.	0.4	263
5	Anatomy and Neurophysiology of Cough. Chest, 2014, 146, 1633-1648.	0.4	227
6	Vagal afferent nerves regulating the cough reflex. Respiratory Physiology and Neurobiology, 2006, 152, 223-242.	0.7	207
7	A worldwide survey of chronic cough: a manifestation of enhanced somatosensory response. European Respiratory Journal, 2014, 44, 1149-1155.	3.1	202
8	Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respiratory Medicine,the, 2021, 9, 533-544.	5.2	190
9	Chronic cough as a neuropathic disorder. Lancet Respiratory Medicine, the, 2013, 1, 414-422.	5.2	189
10	Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs. Journal of Physiology, 2005, 569, 559-573.	1.3	180
11	Representation of Capsaicin-evoked Urge-to-Cough in the Human Brain Using Functional Magnetic Resonance Imaging. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 327-332.	2.5	166
12	Chronic Cough Due to Gastroesophageal Reflux in Adults. Chest, 2016, 150, 1341-1360.	0.4	158
13	Investigation of the Neural Control of Cough and Cough Suppression in Humans Using Functional Brain Imaging. Journal of Neuroscience, 2011, 31, 2948-2958.	1.7	154
14	Neural correlates of cough hypersensitivity in humans: evidence for central sensitisation and dysfunctional inhibitory control. Thorax, 2016, 71, 323-329.	2.7	140
15	CICADA: Cough in Children and Adults: Diagnosis and Assessment. Australian Cough Guidelines summary statement. Medical Journal of Australia, 2010, 192, 265-271.	0.8	136
16	An overview of the sensory receptors regulating cough. , 2005, 1, 2.		120
17	Synergistic interactions between airway afferent nerve subtypes mediating reflex bronchospasm in guinea pigs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R86-R98.	0.9	110
18	Distinct Brainstem and Forebrain Circuits Receiving Tracheal Sensory Neuron Inputs Revealed Using a Novel Conditional Anterograde Transsynaptic Viral Tracing System. Journal of Neuroscience, 2015, 35, 7041-7055.	1.7	94

#	Article	IF	CITATIONS
19	Aeroallergen-induced IL-33 predisposes to respiratory virus–induced asthma by dampening antiviral immunity. Journal of Allergy and Clinical Immunology, 2016, 138, 1326-1337.	1.5	87
20	Selective Expression of a Sodium Pump Isozyme by Cough Receptors and Evidence for Its Essential Role in Regulating Cough. Journal of Neuroscience, 2009, 29, 13662-13671.	1.7	84
21	Cough hypersensitivity and chronic cough. Nature Reviews Disease Primers, 2022, 8, .	18.1	80
22	Reflex mechanisms in gastroesophageal reflux disease and asthma. American Journal of Medicine, 2003, 115, 45-48.	0.6	79
23	Transneuronal tracing of airways-related sensory circuitry using herpes simplex virus 1, strain H129. Neuroscience, 2012, 207, 148-166.	1.1	77
24	Sensory regulation of the cough reflex. Pulmonary Pharmacology and Therapeutics, 2004, 17, 361-368.	1.1	75
25	Multiple mechanisms of reflex bronchospasm in guinea pigs. Journal of Applied Physiology, 2001, 91, 2642-2653.	1.2	70
26	Central nervous system control of the airways: pharmacological implications. Current Opinion in Pharmacology, 2002, 2, 220-228.	1.7	68
27	Neural correlates coding stimulus level and perception of capsaicin-evoked urge-to-cough in humans. NeuroImage, 2012, 61, 1324-1335.	2.1	68
28	Evidence for multiple sensory circuits in the brain arising from the respiratory system: an anterograde viral tract tracing study in rodents. Brain Structure and Function, 2015, 220, 3683-3699.	1.2	66
29	Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a–mediated T reg expansion. Journal of Experimental Medicine, 2018, 215, 537-557.	4.2	65
30	Brain Activity Associated with Placebo Suppression of the Urge-to-Cough in Humans. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1069-1075.	2.5	64
31	The heterogeneity of chronic cough: a case for endotypes of cough hypersensitivity. Lancet Respiratory Medicine,the, 2018, 6, 636-646.	5.2	64
32	Etiologies of Chronic Cough in Pediatric Cohorts. Chest, 2017, 152, 607-617.	0.4	63
33	Anterograde neuronal circuit tracing using a genetically modified herpes simplex virus expressing EGFP. Journal of Neuroscience Methods, 2012, 209, 158-167.	1.3	62
34	Sensorimotor circuitry involved in the higher brain control of coughing. Cough, 2013, 9, 7.	2.7	62
35	Respiratory action of capsaicin microinjected into the nucleus of the solitary tract: involvement of vanilloid and tachykinin receptors. British Journal of Pharmacology, 1999, 127, 473-481.	2.7	59
36	Evidence for Differential Reflex Regulation of Cholinergic and Noncholinergic Parasympathetic Nerves Innervating the Airways. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1076-1083.	2.5	59

#	Article	IF	CITATIONS
37	Pharmacologic and Nonpharmacologic Treatment for Acute Cough Associated With the Common Cold. Chest, 2017, 152, 1021-1037.	0.4	59
38	Local D2- to D1-neuron transmodulation updates goal-directed learning in the striatum. Science, 2020, 367, 549-555.	6.0	59
39	Reflex regulation of airway sympathetic nerves in guinea-pigs. Journal of Physiology, 2006, 573, 549-564.	1.3	57
40	Respiratory actions of tachykinins in the nucleus of the solitary tract: characterization of receptors using selective agonists and antagonists. British Journal of Pharmacology, 2000, 129, 1121-1131.	2.7	56
41	Mechanisms and Rationale for Targeted Therapies in Refractory and Unexplained Chronic Cough. Clinical Pharmacology and Therapeutics, 2021, 109, 619-636.	2.3	56
42	The plasmacytoid dendritic cell: at the cross-roads in asthma. European Respiratory Journal, 2014, 43, 264-275.	3.1	54
43	Central mechanisms of airway sensation and cough hypersensitivity. Pulmonary Pharmacology and Therapeutics, 2017, 47, 9-15.	1.1	53
44	Transcriptional Profiling of Individual Airway Projecting Vagal Sensory Neurons. Molecular Neurobiology, 2020, 57, 949-963.	1.9	51
45	Symptomatic Treatment of Cough Among Adult Patients With Lung Cancer. Chest, 2017, 151, 861-874.	0.4	50
46	Treatment of Interstitial Lung Disease Associated Cough. Chest, 2018, 154, 904-917.	0.4	50
47	Na+-K+-2Clâ^' cotransporters and Clâ^' channels regulate citric acid cough in guinea pigs. Journal of Applied Physiology, 2006, 101, 635-643.	1.2	49
48	Mapping supramedullary pathways involved in cough using functional brain imaging: Comparison with pain. Pulmonary Pharmacology and Therapeutics, 2009, 22, 90-96.	1.1	46
49	Assessment of Intervention Fidelity and Recommendations for Researchers Conducting Studies on the Diagnosis and Treatment of Chronic Cough in the Adult. Chest, 2015, 148, 32-54.	0.4	46
50	Multiple neural circuits mediating airway sensations: Recent advances in the neurobiology of the urge-to-cough. Respiratory Physiology and Neurobiology, 2016, 226, 115-120.	0.7	46
51	Immunohistochemical characterization of nodose cough receptor neurons projecting to the trachea of guinea pigs. Cough, 2008, 4, 9.	2.7	43
52	The Role of the Paratrigeminal Nucleus in Vagal Afferent Evoked Respiratory Reflexes: A Neuroanatomical and Functional Study in Guinea Pigs. Frontiers in Physiology, 2015, 6, 378.	1.3	43
53	The Effect of Placebo Conditioning on Capsaicin-Evoked Urge to Cough. Chest, 2012, 142, 951-957.	0.4	41
54	Translating Cough Mechanisms Into Better Cough Suppressants. Chest, 2017, 152, 833-841.	0.4	41

#	Article	IF	CITATIONS
55	Neural regulation of inflammation in the airways and lungs. Autonomic Neuroscience: Basic and Clinical, 2014, 182, 95-101.	1.4	40
56	Cough Sensors. V. Pharmacological Modulation of Cough Sensors. Handbook of Experimental Pharmacology, 2009, , 99-127.	0.9	39
57	Substance P receptors in brain stem respiratory centers of the rat: regulation of NK1 receptors by hypoxia. Journal of Pharmacology and Experimental Therapeutics, 1997, 282, 1547-56.	1.3	39
58	Regulatory T Cells Prevent Inducible BALT Formation by Dampening Neutrophilic Inflammation. Journal of Immunology, 2015, 194, 4567-4576.	0.4	38
59	Translational review: Neuroimmune mechanisms in cough and emerging therapeutic targets. Journal of Allergy and Clinical Immunology, 2018, 142, 1392-1402.	1.5	38
60	Nitric Oxide–dependent Modulation of Smooth-Muscle Tone by Airway Parasympathetic Nerves. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 481-488.	2.5	36
61	Cough Due to TB and Other Chronic Infections. Chest, 2018, 153, 467-497.	0.4	36
62	Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 620-628.	1.3	35
63	Cough-related neural processing in the brain: A roadmap for cough dysfunction?. Neuroscience and Biobehavioral Reviews, 2014, 47, 457-468.	2.9	34
64	Neural dysfunction following respiratory viral infection as a cause of chronic cough hypersensitivity. Pulmonary Pharmacology and Therapeutics, 2015, 33, 52-56.	1.1	33
65	Characterization of the Vagal Motor Neurons Projecting to the Guinea Pig Airways and Esophagus. Frontiers in Neurology, 2010, 1, 153.	1.1	32
66	Chronic cough and cough hypersensitivity syndrome. Lancet Respiratory Medicine,the, 2016, 4, 934-935.	5.2	31
67	Modelling ischemia-reperfusion injury (IRI) <i>in vitro</i> using metabolically matured induced pluripotent stem cell-derived cardiomyocytes. APL Bioengineering, 2018, 2, 026102.	3.3	31
68	HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscleÂremodelling. PLoS Pathogens, 2020, 16, e1008651.	2.1	31
69	Autonomic neural control of the airways. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 117, 215-228.	1.0	30
70	Heterogeneity of cough neurobiology: Clinical implications. Pulmonary Pharmacology and Therapeutics, 2019, 55, 62-66.	1.1	30
71	Global Physiology and Pathophysiology of Cough. Chest, 2021, 159, 282-293.	0.4	30
72	Clinically Diagnosing Pertussis-associated Cough in Adults and Children. Chest, 2019, 155, 147-154.	0.4	27

#	Article	IF	CITATIONS
73	Occupational and Environmental Contributions to Chronic Cough in Adults. Chest, 2016, 150, 894-907.	0.4	26
74	Neuronal Modulation of Airway and Vascular Tone and Their Influence on Nonspecific Airways Responsiveness in Asthma. Journal of Allergy, 2012, 2012, 1-7.	0.7	24
75	RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma. ELife, 2017, 6, .	2.8	24
76	Absence of Toll–IL-1 Receptor 8/Single Immunoglobulin IL-1 Receptor–Related Molecule Reduces House Dust Mite–Induced Allergic Airway Inflammation in Mice. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 481-490.	1.4	23
77	Adult Outpatients With Acute Cough Due to Suspected Pneumonia or Influenza. Chest, 2019, 155, 155-167.	0.4	23
78	Piezo2 Knockdown Inhibits Noxious Mechanical Stimulation and NGF-Induced Sensitization in A-Delta Bone Afferent Neurons. Frontiers in Physiology, 2021, 12, 644929.	1.3	23
79	An in vivo guinea pig preparation for studying the autonomic regulation of airway smooth muscle tone. Autonomic Neuroscience: Basic and Clinical, 2002, 99, 91-101.	1.4	22
80	Sympathetic nerve-dependent regulation of mucosal vascular tone modifies airway smooth muscle reactivity. Journal of Applied Physiology, 2010, 109, 1292-1300.	1.2	21
81	Hypoxia attenuates the respiratory response to injection of substance P into the nucleus of the solitary tract of the rat. Neuroscience Letters, 1998, 256, 9-12.	1.0	20
82	Innervation of tracheal parasympathetic ganglia by esophageal cholinergic neurons: evidence from anatomic and functional studies in guinea pigs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L404-L416.	1.3	20
83	Functionally connected brain regions in the network activated during capsaicin inhalation. Human Brain Mapping, 2014, 35, 5341-5355.	1.9	20
84	Peripheral and central mechanisms of cough hypersensitivity. Journal of Thoracic Disease, 2020, 12, 5179-5193.	0.6	20
85	Respiratory actions of vanilloid receptor agonists in the nucleus of the solitary tract: comparison of resiniferatoxin with non-pungent agents and anandamide. British Journal of Pharmacology, 2002, 137, 919-927.	2.7	19
86	Characterization And Regulation Of Tachykinin Receptors In The Nucleus Tractus Solitarius. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 939-942.	0.9	18
87	Respiratory actions of tachykinins in the nucleus of the solitary tract: effect of neonatal capsaicin pretreatment. British Journal of Pharmacology, 2000, 129, 1132-1139.	2.7	18
88	Dynamics of male pelvic floor muscle contraction observed with transperineal ultrasound imaging differ between voluntary and evoked coughs. Journal of Applied Physiology, 2014, 116, 953-960.	1.2	18
89	Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Structure and Function, 2018, 223, 4005-4022.	1.2	18
90	Evidence for multiple bulbar and higher brain circuits processing sensory inputs from the respiratory system in humans. Journal of Physiology, 2020, 598, 5771-5787.	1.3	18

#	Article	IF	CITATIONS
91	A role for neurokinin 1 receptor expressing neurons in the paratrigeminal nucleus in bradykininâ€evoked cough in guineaâ€pigs. Journal of Physiology, 2020, 598, 2257-2275.	1.3	18
92	Forebrain projection neurons target functionally diverse respiratory control areas in the midbrain, pons, and medulla oblongata. Journal of Comparative Neurology, 2021, 529, 2243-2264.	0.9	18
93	Endogenous central suppressive mechanisms regulating cough as potential targets for novel antitussive therapies. Current Opinion in Pharmacology, 2015, 22, 1-8.	1.7	17
94	A neuroanatomical framework for the central modulation of respiratory sensory processing and cough by the periaqueductal grey. Journal of Thoracic Disease, 2017, 9, 4098-4107.	0.6	17
95	Altered respiratory response to substance P and reduced NK1 receptor binding in the nucleus of the solitary tract of aged rats. Brain Research, 1999, 826, 139-142.	1.1	16
96	Central nervous system control of cough: pharmacological implications. Current Opinion in Pharmacology, 2011, 11, 265-271.	1.7	16
97	Isolation of Contractile Cardiomyocytes from Human Pluripotent Stem-Cell-Derived Cardiomyogenic Cultures Using a Human <i>NCX1-EGFP</i> Reporter. Stem Cells and Development, 2015, 24, 11-20.	1.1	16
98	Treating Cough Due to Non-CF and CF Bronchiectasis With Nonpharmacological Airway Clearance. Chest, 2018, 153, 986-993.	0.4	16
99	Altered neural activity in brain cough suppression networks in cigarette smokers. European Respiratory Journal, 2019, 54, 1900362.	3.1	16
100	Targeting Tachykinins for the Treatment of Obstructive Airways Disease. Treatments in Respiratory Medicine, 2004, 3, 201-216.	1.4	15
101	Fluorescent styryl dyes FM1-43 and FM2-10 are muscarinic receptor antagonists: intravital visualization of receptor occupancy. Journal of Physiology, 2006, 575, 23-35.	1.3	15
102	Cholinergic basal forebrain neurons regulate fear extinction consolidation through p75 neurotrophin receptor signaling. Translational Psychiatry, 2018, 8, 199.	2.4	15
103	Afferent neural pathways mediating cough in animals and humans. Journal of Thoracic Disease, 2014, 6, S712-9.	0.6	15
104	SENSORY NEURAL TARGETS FOR THE TREATMENT OF COUGH. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 955-962.	0.9	14
105	Regional brain stem activations during capsaicin inhalation using functional magnetic resonance imaging in humans. Journal of Neurophysiology, 2019, 121, 1171-1182.	0.9	14
106	The impact of influenza pulmonary infection and inflammation on vagal bronchopulmonary sensory neurons. FASEB Journal, 2021, 35, e21320.	0.2	14
107	Hippocampal modulation of cardiorespiratory function. Respiratory Physiology and Neurobiology, 2018, 252-253, 18-27.	0.7	13
108	Sensations and regional brain responses evoked by tussive stimulation of the airways. Respiratory Physiology and Neurobiology, 2014, 204, 58-63.	0.7	12

#	Article	IF	CITATIONS
109	Are neural pathways processing airway inputs sensitized in patients with cough hypersensitivity?. Pulmonary Pharmacology and Therapeutics, 2019, 57, 101806.	1.1	11
110	Behavioral and Regional Brain Responses to Inhalation of Capsaicin Modified by Painful Conditioning in Humans. Chest, 2021, 159, 1136-1146.	0.4	11
111	Mini Review: Central Organization of Airway Afferent Nerve Circuits. Neuroscience Letters, 2021, 744, 135604.	1.0	10
112	Autoradiographic localisation of substance P (NK1) receptors in human primary visual cortex. Brain Research, 1998, 794, 309-312.	1.1	9
113	Effects of Systemic Capsaicin Treatment on TRPV1 and Tachykinin NK ₁ Receptor Distribution and Function in the Nucleus of the Solitary Tract of the Adult Rat. Pharmacology, 2011, 87, 214-223.	0.9	8
114	The effect of hyperpolarizationâ€activated cyclic nucleotideâ€gated ion channel inhibitors on the vagal control of guinea pig airway smooth muscle tone. British Journal of Pharmacology, 2014, 171, 3633-3650.	2.7	8
115	Reciprocal connectivity of the periaqueductal gray with the ponto-medullary respiratory network in rat. Brain Research, 2021, 1757, 147255.	1.1	8
116	Tachykinin receptor (NK1, NK2, NK3) binding sites in the rat caudal brainstem following neonatal capsaicin administration. Brain Research, 2003, 979, 230-234.	1.1	7
117	Chronic Cough Related to Acute Viral Bronchiolitis in Children. Chest, 2018, 154, 378-382.	0.4	7
118	Chronic cough: a disorder of response inhibition?. European Respiratory Journal, 2019, 53, 1900254.	3.1	7
119	Sensory Pathways for the Cough Reflex. , 0, , 159-172.		6
120	Descending Modulation of Laryngeal Vagal Sensory Processing in the Brainstem Orchestrated by the Submedius Thalamic Nucleus. Journal of Neuroscience, 2020, 40, 9426-9439.	1.7	6
121	Cough in Ambulatory Immunocompromised Adults. Chest, 2017, 152, 1038-1042.	0.4	5
122	Global Physiology and Pathophysiology ofÂCough. Chest, 2021, 160, 1413-1423.	0.4	5
123	Jugular vagal ganglia neurons and airway nociception: A target for treating chronic cough. International Journal of Biochemistry and Cell Biology, 2021, 135, 105981.	1.2	5
124	Modulation of Vagal Sensory Neurons via High Mobility Group Box-1 and Receptor for Advanced Glycation End Products: Implications for Respiratory Viral Infections. Frontiers in Physiology, 2021, 12, 744812.	1.3	5
125	Perspectives on neuroinflammation contributing to chronic cough. European Respiratory Journal, 2020, 56, 2000758.	3.1	4
126	Reflexes Initiated by Activation of the Vagal Afferent Nerves Innervating the Airways and Lungs. Frontiers in Neuroscience, 2005, , 403-430.	0.0	4

#	Article	IF	CITATIONS
127	An arterially perfused brainstem preparation of guinea pig to study central mechanisms of airway defense. Journal of Neuroscience Methods, 2019, 317, 49-60.	1.3	3
128	Tachykinin NK3 Receptor Antagonists. Handbook of Experimental Pharmacology, 2004, , 245-271.	0.9	3
129	A Cough Is a Cough, Is It Not? Neurophenotypes Define Patients with Chronic Cough. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1324-1326.	2.5	2
130	Guinea Pig Models of Asthma. Current Protocols in Pharmacology, 2014, 67, Unit 5.26.1-38.	4.0	1
131	Old drug, new tricks: reducing cough in IPF. Lancet Respiratory Medicine, the, 2017, 5, 766-767.	5.2	1
132	Progress in cough hypersensitivity at the Tenth London International Cough Symposium 2018 (10th) Tj ETQq0 0	0 ₁₉ BT /O	verlock 10 Tf

133	Transneuronal tracing of airways related sensory circuitry using Herpes Simplex Virus 1, strain H129. FASEB Journal, 2011, 25, 1077.13.	0.2	1
134	Editorial: Neural and Mechanical Mechanisms in Pulmonary Defense: What Does the Future Hold?. Frontiers in Physiology, 0, 13, .	1.3	1
135	Guinea Pig Models of Asthma. Current Protocols in Pharmacology, 2002, 16, Unit 5.26.	4.0	0
136	Afferent Pathways Regulating the Cough Reflex. Lung Biology in Health and Disease, 2005, , 25-48.	0.1	0
137	HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. , 2020, 16, e1008651.		0
138	HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. , 2020, 16, e1008651.		0
139	HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. , 2020, 16, e1008651.		0
140	HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. , 2020, 16, e1008651.		0