
## Soraya Pelaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1292802/publications.pdf Version: 2024-02-01



SODAVA DELAZ

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules. Journal of Experimental Botany, 2021, 72, 398-414.                                         | 4.8  | 7         |
| 2  | The floral repressors TEMPRANILLO1 and 2 modulate salt tolerance by regulating hormonal components and photoâ€protection in <i>Arabidopsis</i> . Plant Journal, 2021, 105, 7-21.                             | 5.7  | 11        |
| 3  | Gene expression underlying floral epidermal specialization in <i>Aristolochia fimbriata</i><br>(Aristolochiaceae). Annals of Botany, 2021, 127, 749-764.                                                     | 2.9  | 5         |
| 4  | Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. Frontiers in Plant Science, 2021, 12, 805635.                                                                                    | 3.6  | 38        |
| 5  | Genes of the <i>RAV</i> Family Control Heading Date and Carpel Development in Rice. Plant Physiology, 2020, 183, 1663-1680.                                                                                  | 4.8  | 25        |
| 6  | <scp>TEMPRANILLO</scp> is a direct repressor of the micro <scp>RNA</scp> miR172. Plant Journal, 2019, 100, 522-535.                                                                                          | 5.7  | 24        |
| 7  | Aa <scp>MYB</scp> 1 and its orthologue At <scp>MYB</scp> 61 affect terpene metabolism and trichome development in <i>Artemisia annua</i> and <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 90, 520-534. | 5.7  | 163       |
| 8  | Molecular Farming in Artemisia annua, a Promising Approach to Improve Anti-malarial Drug<br>Production. Frontiers in Plant Science, 2016, 7, 329.                                                            | 3.6  | 35        |
| 9  | TEMPRANILLO Reveals the Mesophyll as Crucial for Epidermal Trichome Formation. Plant Physiology, 2016, 170, 1624-1639.                                                                                       | 4.8  | 39        |
| 10 | Flowering and trichome development share hormonal and transcription factor regulation. Journal of Experimental Botany, 2016, 67, 1209-1219.                                                                  | 4.8  | 53        |
| 11 | SHORT VEGETATIVE PHASE Up-Regulates <i>TEMPRANILLO2</i> Floral Repressor at Low Ambient<br>Temperatures. Plant Physiology, 2015, 169, 1214-1224.                                                             | 4.8  | 46        |
| 12 | RAV genes: regulation of floral induction and beyond. Annals of Botany, 2014, 114, 1459-1470.                                                                                                                | 2.9  | 118       |
| 13 | The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO Journal, 2013, 32, 2884-2895.                                      | 7.8  | 87        |
| 14 | The <i><scp>WOX</scp>13</i> homeobox gene promotes replum formation in the <i>Arabidopsis thaliana</i> fruit. Plant Journal, 2013, 73, 37-49.                                                                | 5.7  | 94        |
| 15 | TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis.<br>Nature Communications, 2012, 3, 808.                                                                     | 12.8 | 170       |
| 16 | The <i>NGATHA</i> Genes Direct Style Development in the <i>Arabidopsis</i> Gynoecium Â. Plant Cell, 2009, 21, 1394-1409.                                                                                     | 6.6  | 135       |
| 17 | The balance between CONSTANS and TEMPRANILLO controls floral induction. Comparative<br>Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S196.                              | 1.8  | 0         |
| 18 | The Balance between CONSTANS and TEMPRANILLO Activities Determines FT Expression to Trigger Flowering. Current Biology, 2008, 18, 1338-1343.                                                                 | 3.9  | 256       |

SORAYA PELAZ

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | An <i>AGAMOUS</i> -Related MADS-Box Gene, <i>XAL1</i> ( <i>AGL12</i> ), Regulates Root Meristem Cell<br>Proliferation and Flowering Transition in Arabidopsis  Â. Plant Physiology, 2008, 146, 1182-1192. | 4.8  | 188       |
| 20 | A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant Journal, 2005, 43, 586-596.                                                                                  | 5.7  | 122       |
| 21 | Flower and fruit development in Arabidopsis thaliana. International Journal of Developmental<br>Biology, 2005, 49, 633-643.                                                                               | 0.6  | 97        |
| 22 | The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity. Current<br>Biology, 2004, 14, 1935-1940.                                                                           | 3.9  | 747       |
| 23 | AGL24acts as a promoter of flowering inArabidopsisand is positively regulated by vernalization. Plant<br>Journal, 2003, 33, 867-874.                                                                      | 5.7  | 298       |
| 24 | The Role of MADS-Box Genes in the Control of Flower and Fruit Development in Arabidopsis. , 2003, , 20-27.                                                                                                |      | 0         |
| 25 | APETALA1 and SEPALLATA3 interact to promote flower development. Plant Journal, 2001, 26, 385-394.                                                                                                         | 5.7  | 290       |
| 26 | Conversion of leaves into petals in Arabidopsis. Current Biology, 2001, 11, 182-184.                                                                                                                      | 3.9  | 318       |
| 27 | B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405, 200-203.                                                                                                     | 27.8 | 1,337     |
| 28 | An ancestral MADS-box gene duplication occurred before the divergence of plants and animals.<br>Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5328-5333.     | 7.1  | 459       |
| 29 | MADSâ€box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant Journal, 2000, 24, 457-466.                                                             | 5.7  | 36        |
| 30 | MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant Journal, 2000, 24, 457-466.                                                              | 5.7  | 296       |
| 31 | Control of Carpel and Fruit Development in Arabidopsis. Annual Review of Biochemistry, 1999, 68, 321-354.                                                                                                 | 11.1 | 206       |
| 32 | Visualization of Gene Expression in Living Adult Drosophila. Science, 1996, 274, 252-255.                                                                                                                 | 12.6 | 482       |
| 33 | Genetic factors controlling the expression of the abdominal-A gene of Drosophila within its domain.<br>Mechanisms of Development, 1994, 46, 15-25.                                                        | 1.7  | 9         |