Giuseppe Rosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1292702/publications.pdf Version: 2024-02-01

CHISEDDE ROSI

#	Article	IF	CITATIONS
1	Analytical continuum mechanics <i>à la</i> Hamilton–Piola least action principle for second gradient continua and capillary fluids. Mathematics and Mechanics of Solids, 2015, 20, 375-417.	1.5	212
2	A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mechanics and Thermodynamics, 2014, 26, 639-681.	1.4	202
3	Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Mathematics and Mechanics of Solids, 2014, 19, 555-578.	1.5	124
4	Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Continuum Mechanics and Thermodynamics, 2015, 27, 551-570.	1.4	106
5	A complete description of bi-dimensional anisotropic strain-gradient elasticity. International Journal of Solids and Structures, 2015, 69-70, 195-206.	1.3	93
6	Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion, 2016, 63, 120-134.	1.0	89
7	On the validity range of strain-gradient elasticity: A mixed static-dynamic identification procedure. European Journal of Mechanics, A/Solids, 2018, 69, 179-191.	2.1	79
8	Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2013, 93, 914-927.	0.9	68
9	The relaxed linear micromorphic continuum: Existence, uniqueness and continuous dependence in dynamics. Mathematics and Mechanics of Solids, 2015, 20, 1171-1197.	1.5	67
10	Band gaps in the relaxed linear micromorphic continuum. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2015, 95, 880-887.	0.9	61
11	Reflection and transmission of elastic waves in non-local band-gap metamaterials: A comprehensive study via the relaxed micromorphic model. Journal of the Mechanics and Physics of Solids, 2016, 95, 441-479.	2.3	59
12	Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. European Journal of Mechanics, A/Solids, 2010, 29, 859-870.	2.1	58
13	Surface/interfacial anti-plane waves in solids with surface energy. Mechanics Research Communications, 2016, 74, 8-13.	1.0	53
14	Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses. Mathematics and Mechanics of Solids, 2019, 24, 2526-2535.	1.5	52
15	Towards the Design of Metamaterials with Enhanced Damage Sensitivity: Second Gradient Porous Materials. Research in Nondestructive Evaluation, 2014, 25, 99-124.	0.5	46
16	Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica, 2015, 50, 825-839.	1.2	44
17	Transverse surface waves on a cylindrical surface with coating. International Journal of Engineering Science, 2020, 147, 103188.	2.7	40
18	Switch between fast and slow Biot compression waves induced by "second gradient microstructure― at material discontinuity surfaces in porous media. International Journal of Solids and Structures, 2013, 50, 1721-1746.	1.3	37

GIUSEPPE ROSI

#	Article	IF	CITATIONS
19	Optimization of piezoelectric patch positioning for passive sound radiation control of plates. JVC/Journal of Vibration and Control, 2013, 19, 658-673.	1.5	23
20	The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection. Continuum Mechanics and Thermodynamics, 2013, 25, 173-196.	1.4	23
21	Wave propagation across a finite heterogeneous interphase modeled as an interface with material properties. Mechanics Research Communications, 2017, 84, 43-48.	1.0	23
22	Multi-scale design of an architected composite structure with optimized graded properties. Composite Structures, 2020, 252, 112608.	3.1	23
23	Monitoring cementless femoral stem insertion by impact analyses: An in vitro study. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 102-108.	1.5	22
24	On the failure of the â€~Similar Piezoelectric Control' in preventing loss of stability by nonconservative positional forces. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66, 1949-1968.	0.7	20
25	Continuum modelling of frequency dependent acoustic beam focussing and steering in hexagonal lattices. European Journal of Mechanics, A/Solids, 2019, 77, 103803.	2.1	19
26	Numerical investigations of ultrasound wave propagating in long bones using a poroelastic model. Mathematics and Mechanics of Solids, 2016, 21, 119-133.	1.5	16
27	Influence of anisotropic bone properties on the biomechanical behavior of the acetabular cup implant: a multiscale finite element study. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 1312-1325.	0.9	16
28	Ex vivo estimation of cementless femoral stem stability using an instrumented hammer. Clinical Biomechanics, 2020, 76, 105006.	0.5	16
29	"Fast―and "slow―pressure waves electrically induced by nonlinear coupling in Biot-type porous medium saturated by a nematic liquid crystal. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	0.7	14
30	A cadaveric validation of a method based on impact analysis to monitor the femoral stem insertion. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103535.	1.5	14
31	Analytical Solutions of 2-dimensional Second Gradient Linear Elasticity for Continua with Cubic-D4 Microstructure. Advanced Structured Materials, 2019, , 383-401.	0.3	12
32	Wave propagation across a functionally graded interphase between soft and hard solids: Insight from a dynamic surface elasticity model. Journal of the Mechanics and Physics of Solids, 2021, 151, 104380.	2.3	12
33	Piezoelectric control of Hopf bifurcations: A non-linear discrete case study. International Journal of Non-Linear Mechanics, 2016, 80, 160-169.	1.4	11
34	Influence of soft tissue in the assessment of the primary fixation of acetabular cup implants using impact analyses. Clinical Biomechanics, 2018, 55, 7-13.	0.5	11
35	Ultrasound characterization of bioinspired functionally graded soft-to-hard composites: Experiment and modeling. Journal of the Acoustical Society of America, 2022, 151, 1490-1501.	0.5	11
36	Reflection of acoustic wave at the interface of a fluid-loaded dipolargradient elastic half-space. Mechanics Research Communications, 2014, 56, 98-103.	1.0	10

GIUSEPPE ROSI

#	Article	IF	CITATIONS
37	Surface waves at the interface between an inviscid fluid and a dipolar gradient solid. Wave Motion, 2015, 53, 51-65.	1.0	10
38	Effects of the microstructure and density profiles on wave propagation across an interface with material properties. Continuum Mechanics and Thermodynamics, 2019, 31, 1165-1180.	1.4	9
39	On the Failure of Classic Elasticity in Predicting Elastic Wave Propagation in Gyroid Lattices for Very Long Wavelengths. Symmetry, 2020, 12, 1243.	1.1	9
40	Controlling the Limit-Cycle of the Ziegler Column via a Tuned Piezoelectric Damper. Mathematical Problems in Engineering, 2015, 2015, 1-9.	0.6	8
41	Ex Vivo Evaluation of Cementless Acetabular Cup Stability Using Impact Analyses with a Hammer Instrumented with Strain Sensors. Sensors, 2018, 18, 62.	2.1	8
42	Ultrasonic characterization and multiscale analysis for the evaluation of dental implant stability: A sensitivity study. Biomedical Signal Processing and Control, 2018, 42, 37-44.	3.5	7
43	Anatomical subject validation of an instrumented hammer using machine learning for the classification of osteotomy fracture in rhinoplasty. Medical Engineering and Physics, 2021, 95, 111-116.	0.8	7
44	Using an Impact Hammer to Estimate Elastic Modulus and Thickness of a Sample During an Osteotomy. Journal of Biomechanical Engineering, 2020, 142, .	0.6	6
45	Assessing the effective elastic properties of the tendon-to-bone insertion: a multiscale modeling approach. Biomechanics and Modeling in Mechanobiology, 2021, 20, 433-448.	1.4	5
46	Using an impact hammer to perform biomechanical measurements during osteotomies: Study of an animal model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2021, 235, 838-845.	1.0	4
47	Modal Analysis of the Ancillary During Femoral Stem Insertion: A Study on Bone Mimicking Phantoms. Annals of Biomedical Engineering, 2022, 50, 16-28.	1.3	4
48	Wave propagation in strain gradient poroelastic medium with microinertia: closed-form and finite element solutions. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	0.7	2
49	Validation of an Instrumented Hammer for Rhinoplasty Osteotomies: A Cadaveric Study. Facial Plastic Surgery and Aesthetic Medicine, 2021, , .	0.5	1
50	Closed-Form and Finite Element Solutions of Wave Propagation in Strain Gradient Poroelastic Medium with Micro Inertia. , 2017, , .		0
51	Waves and Generalized Continua. , 2018, , 1-9.		0

52 Waves and Generalized Continua. , 2020, , 2756-2765.