
Ali Gholipour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1292560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks. Lecture Notes in Computer Science, 2017, , 379-387.	1.0	417
2	Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Medical Image Analysis, 2020, 65, 101759.	7.0	320
3	Robust Super-Resolution Volume Reconstruction From Slice Acquisitions: Application to Fetal Brain MRI. IEEE Transactions on Medical Imaging, 2010, 29, 1739-1758.	5.4	275
4	Brain Functional Localization: A Survey of Image Registration Techniques. IEEE Transactions on Medical Imaging, 2007, 26, 427-451.	5.4	225
5	A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Scientific Reports, 2017, 7, 476.	1.6	217
6	Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 2017, 36, 2319-2330.	5.4	159
7	Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Structure and Function, 2012, 217, 127-139.	1.2	140
8	Asymmetric Loss Functions and Deep Densely-Connected Networks for Highly-Imbalanced Medical Image Segmentation: Application to Multiple Sclerosis Lesion Detection. IEEE Access, 2019, 7, 1721-1735.	2.6	120
9	Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions. Medical Image Analysis, 2012, 16, 1465-1476.	7.0	106
10	Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images. NeuroImage, 2019, 185, 593-608.	2.1	81
11	Fetal MRI: A technical update with educational aspirations. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2014, 43, 237-266.	0.2	78
12	Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly. NeuroImage, 2012, 60, 1819-1831.	2.1	74
13	Semi-Supervised Learning With Deep Embedded Clustering for Image Classification and Segmentation. IEEE Access, 2019, 7, 11093-11104.	2.6	67
14	Transfer learning in medical image segmentation: New insights from analysis of the dynamics of model parameters and learned representations. Artificial Intelligence in Medicine, 2021, 116, 102078.	3.8	66
15	Real-Time Deep Pose Estimation With Geodesic Loss for Image-to-Template Rigid Registration. IEEE Transactions on Medical Imaging, 2019, 38, 470-481.	5.4	63
16	Fetal Brain Volume Predicts Neurodevelopment in Congenital Heart Disease. Circulation, 2022, 145, 1108-1119.	1.6	56
17	Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. NeuroImage, 2017, 156, 475-488.	2.1	54

18 Real-time automatic fetal brain extraction in fetal MRI by deep learning. , 2018, , .

50

#	Article	IF	CITATIONS
19	Regional Brain Growth Trajectories in Fetuses with Congenital Heart Disease. Annals of Neurology, 2021, 89, 143-157.	2.8	49
20	Early-Emerging Sulcal Patterns Are Atypical in Fetuses with Congenital Heart Disease. Cerebral Cortex, 2019, 29, 3605-3616.	1.6	40
21	Quantitative In vivo MRI Assessment of Structural Asymmetries and Sexual Dimorphism of Transient Fetal Compartments in the Human Brain. Cerebral Cortex, 2020, 30, 1752-1767.	1.6	40
22	A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI. IEEE Transactions on Medical Imaging, 2021, 40, 1123-1133.	5.4	37
23	Prenatal to postnatal trajectory of brain growth in complex congenital heart disease. NeuroImage: Clinical, 2018, 20, 913-922.	1.4	36
24	A New Sparse Representation Framework for Reconstruction of an Isotropic High Spatial Resolution MR Volume From Orthogonal Anisotropic Resolution Scans. IEEE Transactions on Medical Imaging, 2017, 36, 1182-1193.	5.4	34
25	Construction of a Deformable Spatiotemporal MRI Atlas of the Fetal Brain: Evaluation of Similarity Metrics and Deformation Models. Lecture Notes in Computer Science, 2014, 17, 292-299.	1.0	32
26	Intelligent Labeling Based on Fisher Information for Medical Image Segmentation Using Deep Learning. IEEE Transactions on Medical Imaging, 2019, 38, 2642-2653.	5.4	32
27	Automated template-based brain localization and extraction for fetal brain MRI reconstruction. NeuroImage, 2017, 155, 460-472.	2.1	31
28	Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking. IEEE Transactions on Medical Imaging, 2016, 35, 2258-2269.	5.4	30
29	In vivo characterization of emerging white matter microstructure in the fetal brain in the third trimester. Human Brain Mapping, 2020, 41, 3177-3185.	1.9	28
30	Simultaneous multi-slice accelerated turbo spin echo of the knee in pediatric patients. Skeletal Radiology, 2018, 47, 821-831.	1.2	24
31	Tuber Locations Associated with Infantile Spasms Map to a Common Brain Network. Annals of Neurology, 2021, 89, 726-739.	2.8	24
32	Normal Growth, Sexual Dimorphism, and Lateral Asymmetries at Fetal Brain MRI. Radiology, 2022, 303, 162-170.	3.6	24
33	Superâ€resolution reconstruction in frequency, image, and wavelet domains to reduce throughâ€plane partial voluming in MRI. Medical Physics, 2015, 42, 6919-6932.	1.6	23
34	Average field map image template for Echo-Planar image analysis. , 2008, 2008, 94-7.		22
35	Association of Isolated Congenital Heart Disease with Fetal Brain Maturation. American Journal of Neuroradiology, 2020, 41, 1525-1531.	1.2	22
36	Spatiotemporal Differences in the Regional Cortical Plate and Subplate Volume Growth during Fetal Development. Cerebral Cortex, 2020, 30, 4438-4453.	1.6	22

#	Article	IF	CITATIONS
37	Deep learning-based parameter estimation in fetal diffusion-weighted MRI. NeuroImage, 2021, 243, 118482.	2.1	22
38	Deep Predictive Motion Tracking in Magnetic Resonance Imaging: Application to Fetal Imaging. IEEE Transactions on Medical Imaging, 2020, 39, 3523-3534.	5.4	21
39	Medical Image Segmentation Using Transformer Networks. IEEE Access, 2022, 10, 29322-29332.	2.6	20
40	Accelerated Super-resolution MR Image Reconstruction via a 3D Densely Connected Deep Convolutional Neural Network. , 2018, , .		19
41	Active Deep Learning with Fisher Information for Patch-Wise Semantic Segmentation. Lecture Notes in Computer Science, 2018, 11045, 83-91.	1.0	19
42	Learning to estimate the fiber orientation distribution function from diffusion-weighted MRI. NeuroImage, 2021, 239, 118316.	2.1	17
43	Maximum A Posteriori Estimation of Isotropic High-Resolution Volumetric MRI from Orthogonal Thick-Slice Scans. Lecture Notes in Computer Science, 2010, 13, 109-116.	1.0	16
44	3D Superâ€Resolution Motionâ€Corrected MRI: Validation of Fetal Posterior Fossa Measurements. Journal of Neuroimaging, 2016, 26, 539-544.	1.0	15
45	Scan-Specific Generative Neural Network for MRI Super-Resolution Reconstruction. IEEE Transactions on Medical Imaging, 2022, 41, 1383-1399.	5.4	15
46	Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: Correlation with gestational age. Journal of Magnetic Resonance Imaging, 2016, 44, 1650-1655.	1.9	14
47	Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography. Human Brain Mapping, 2021, 42, 5771-5784.	1.9	14
48	Motion-robust MRI through real-time motion tracking and retrospective super-resolution volume reconstruction. , 2011, 2011, 5722-5.		13
49	Fast and High-Resolution Neonatal Brain MRI Through Super-Resolution Reconstruction From Acquisitions With Variable Slice Selection Direction. Frontiers in Neuroscience, 2021, 15, 636268.	1.4	13
50	Lung Nodule Malignancy Prediction in Sequential CT Scans: Summary of ISBI 2018 Challenge. IEEE Transactions on Medical Imaging, 2021, 40, 3748-3761.	5.4	13
51	Learning a Gradient Guidance for Spatially Isotropic MRI Super-Resolution Reconstruction. Lecture Notes in Computer Science, 2020, 12262, 136-146.	1.0	13
52	Association between Quantitative MR Markers of Cortical Evolving Organization and Gene Expression during Human Prenatal Brain Development. Cerebral Cortex, 2021, 31, 3610-3621.	1.6	11
53	Isotropic MRI Super-Resolution Reconstruction with Multi-scale Gradient Field Prior. Lecture Notes in Computer Science, 2019, 11766, 3-11.	1.0	11
54	A template-to-slice block matching approach for automatic localization of brain in fetal MRI. , 2015, , .		10

#	Article	IF	CITATIONS
55	A machine learning-based method for estimating the number and orientations of major fascicles in diffusion-weighted magnetic resonance imaging. Medical Image Analysis, 2021, 72, 102129.	7.0	10
56	Simultaneous Motion and Distortion Correction Using Dualâ€Echo Diffusionâ€Weighted MRI. Journal of Neuroimaging, 2020, 30, 276-285.	1.0	9
57	Improving Calibration and Out-of-Distribution Detection in Deep Models for Medical Image Segmentation. IEEE Transactions on Artificial Intelligence, 2023, 4, 383-397.	3.4	9
58	Abnormal development of transient fetal zones in mild isolated fetal ventriculomegaly. Cerebral Cortex, 2023, 33, 1130-1139.	1.6	9
59	Motion-Robust Reconstruction Based on Simultaneous Multi-slice Registration for Diffusion-Weighted MRI of Moving Subjects. Lecture Notes in Computer Science, 2016, 9902, 544-552.	1.0	8
60	Fetal Echoplanar Imaging. Topics in Magnetic Resonance Imaging, 2019, 28, 245-254.	0.7	8
61	Cross-Validation of Deformable Registration With Field Maps in Functional Magnetic Resonance Brain Imaging. IEEE Journal on Selected Topics in Signal Processing, 2008, 2, 854-869.	7.3	7
62	Motionâ€robust diffusion compartment imaging using simultaneous multiâ€slice acquisition. Magnetic Resonance in Medicine, 2019, 81, 3314-3329.	1.9	7
63	3D dense convolutional neural network for fast and accurate single MR image super-resolution. Computerized Medical Imaging and Graphics, 2021, 93, 101973.	3.5	7
64	Accelerated High Spatial Resolution Diffusion-Weighted Imaging. Lecture Notes in Computer Science, 2015, 24, 69-81.	1.0	7
65	SLIMM: Slice localization integrated MRI monitoring. NeuroImage, 2020, 223, 117280.	2.1	6
66	Retrospective Distortion and Motion Correction for Freeâ€Breathing DWâ€MRI of the Kidneys Using Dualâ€Echo EPI and Sliceâ€toâ€Volume Registration. Journal of Magnetic Resonance Imaging, 2021, 53, 1432-1443.	1.9	6
67	Learning to Detect Brain Lesions from Noisy Annotations. , 2020, 2020, 1910-1914.		5
68	Reducing the Effects of Motion Artifacts in fMRI: A Structured Matrix Completion Approach. IEEE Transactions on Medical Imaging, 2022, 41, 172-185.	5.4	5
69	MRI Super-Resolution Through Generative Degradation Learning. Lecture Notes in Computer Science, 2021, 12906, 430-440.	1.0	5
70	Tractography of the Cerebellar Peduncles in Second- and Third-Trimester Fetuses. American Journal of Neuroradiology, 2021, 42, 194-200.	1.2	4
71	In vivo characterization of emerging white matter microstructure in the fetal brain in the third trimester. , 2020, 41, 3177.		4
72	Motion-Robust Spatially Constrained Parameter Estimation in Renal Diffusion-Weighted MRI by 3D Motion Tracking and Correction of Sequential Slices. Lecture Notes in Computer Science, 2017, 10555, 75-85.	1.0	3

#	Article	IF	CITATIONS
73	Gradient-Guided Isotropic MRI Reconstruction From Anisotropic Acquisitions. IEEE Transactions on Computational Imaging, 2021, 7, 1240-1253.	2.6	2
74	Diffusion-derived parameters in lesions, peri-lesion and normal-appearing white matter in multiple sclerosis using tensor, kurtosis and fixel-based analysis. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 2095-2106.	2.4	2
75	Motion-corrected foetal cardiac MRI. Nature Biomedical Engineering, 2019, 3, 852-854.	11.6	1
76	Brain MRI Super-resolution Reconstruction using a Multi-level and Parallel Conv-Deconv Network. , 2019, , .		1