Libo Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1292557/libo-li-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

72	3,537 citations	27	59
papers		h-index	g-index
73	4,426 ext. citations	5.5	5.87
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
72	Recent advances in the synthesis of nanoscale hierarchically porous metalorganic frameworks. Nano Materials Science, 2022,	10.2	2
71	Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review. <i>Science China Materials</i> , 2022 , 65, 298-320	7.1	7
70	Lysozyme Adsorption on Different Functionalized MXenes: A Multiscale Simulation Study. <i>Langmuir</i> , 2021 , 37, 5932-5942	4	O
69	Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures. <i>Frontiers of Chemical Science and Engineering</i> , 2021 , 15, 922-934	4.5	2
68	Recent advances in the synthesis of monolithic metal-organic frameworks. <i>Science China Materials</i> , 2021 , 64, 1305-1319	7.1	51
67	Identical Composition and Distinct Performance: How ZIF-8 Polymorphs Etructures Affect the Adsorption/Separation of Ethane and Ethene. <i>Journal of Chemical & Data</i> , 2021, 66, 3483-3492	2.8	3
66	Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. <i>Nature Sustainability</i> , 2020 , 3, 296-302	22.1	204
65	Atomic Force Microscopy and Molecular Dynamics Simulations for Study of Lignin Solution Self-Assembly Mechanisms in Organic-Aqueous Solvent Mixtures. <i>ChemSusChem</i> , 2020 , 13, 4420-4427	8.3	43
64	Water-based routes for synthesis of metal-organic frameworks: A review. <i>Science China Materials</i> , 2020 , 63, 667-685	7.1	103
63	Solvent effect on xylose conversion under catalyst-free conditions: insights from molecular dynamics simulation and experiments. <i>Green Chemistry</i> , 2020 , 22, 532-539	10	22
62	Engineering New Defects in MIL-100(Fe) via a Mixed-Ligand Approach To Effect Enhanced Volatile Organic Compound Adsorption Capacity. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 774	1 -3 782	69
61	Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST). <i>Chemical Engineering Journal</i> , 2020 , 386, 123	9 145 7	21
60	Lysozyme Adsorption on Porous Organic Cages: A Molecular Simulation Study. <i>Langmuir</i> , 2020 , 36, 1229	9 <u>9</u> -123	08
59	Surface Regulation Towards Stimuli-Responsive Luminescence of Ultrasmall Thiolated Gold Nanoparticles for Ratiometric Imaging. <i>Advanced Functional Materials</i> , 2019 , 29, 1806945	15.6	26
58	Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. <i>Journal of Membrane Science</i> , 2019 , 592, 117361	9.6	54
57	Salt effect on the liquid IIquid equilibrium of the ternary (water + phenol + methyl isobutyl ketone) system: Experimental data and correlation. <i>Chinese Journal of Chemical Engineering</i> , 2019 , 27, 168-173	3.2	4
56	Hierarchically structured metalörganic frameworks assembled by hydroxy double saltöemplate synergy with high spacetime yields. <i>CrystEngComm</i> , 2018 , 20, 1057-1064	3.3	32

(2017-2018)

55	MXene molecular sieving membranes for highly efficient gas separation. <i>Nature Communications</i> , 2018 , 9, 155	17.4	530
54	Computer Simulation of DNA Condensation by PAMAM Dendrimer. <i>Macromolecular Theory and Simulations</i> , 2018 , 27, 1700070	1.5	13
53	Protein Translocation through a MoS2 Nanopore:A Molecular Dynamics Study. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 2070-2080	3.8	32
52	Simulation insight into the cytochrome c adsorption on graphene and graphene oxide surfaces. <i>Applied Surface Science</i> , 2018 , 428, 825-834	6.7	25
51	Measurement and correlation of phase equilibrium data of the mixtures consisting of water, resorcinol, mesityl oxide at different temperatures. <i>Chinese Journal of Chemical Engineering</i> , 2018 , 26, 2573-2580	3.2	8
50	Liquid-liquid equilibrium for methyl butyl ketone + o-, m-, p-cresol + water ternary systems and COSMO-SAC predictions. <i>Journal of Chemical Thermodynamics</i> , 2018 , 127, 17-24	2.9	13
49	Facile synthesis of hierarchical porous metal-organic frameworks with enhanced catalytic activity. <i>Chemical Engineering Journal</i> , 2018 , 334, 1477-1483	14.7	67
48	Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. <i>Science</i> , 2018 , 362, 443-446	33.3	478
47	Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. <i>Science Advances</i> , 2018 , 4, eaau1393	14.3	132
46	Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11734-11742	13	61
45	Computer simulations on the pH-sensitive tri-block copolymer containing zwitterionic sulfobetaine as a novel anti-cancer drug carrier. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 152, 260-268	6	37
44	Liquid[liquid Equilibrium for the Ternary Systems Methyl tert-Butyl Ketone + o-, m-, p-Cresol + Water at (298.2, 313.2, and 323.2) K. <i>Journal of Chemical & Data</i> , 2017, 62, 1929-1936	2.8	5
43	Water Transport with Ultralow Friction through Partially Exfoliated g-C N Nanosheet Membranes with Self-Supporting Spacers. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8974-8980	16.4	177
42	Liquid phase equilibrium of the ternary systems, water + propionic or butyric acid + mesityl oxide, at (298.2 and 323.2) K. <i>Journal of Chemical Thermodynamics</i> , 2017 , 111, 72-79	2.9	15
41	Measurement, correlation and COSMO-SAC prediction of liquid-liquid equilibrium for the ternary systems, mesityl oxide []-[b-, m-, p-cresol []-[]-[]-water, at 333.2K and 353.2 [K. Fluid Phase Equilibria, 2017, 440, 45-53	2.5	14
40	Phase Equilibrium Measurement and Thermodynamic Modeling of the 4-Methylpentan-2-one/3-Methylphenol, and 4-Methylphenol/Water Ternary Systems at 298.2, 313.2, and 323.2 K and 0.1 MPa. <i>Journal of Chemical & Data</i> , 2017, 62, 141-147	2.8	4
39	Liquid-liquid equilibrium for ternary systems, methyl isobutyl ketone + (catechol, resorcinol and hydroquinone) + water at 333.15 K, 343.15 K and 353.15 K. <i>Fluid Phase Equilibria</i> , 2017 , 433, 206-211	2.5	11
38	Computer Simulations on the Channel Membrane Formation by Nonsolvent Induced Phase Separation. <i>Macromolecular Theory and Simulations</i> , 2017 , 26, 1700027	1.5	14

37	Extraction of o-, m- and p-cresol from aqueous solution with methyl isopropyl ketone: Equilibrium, correlations, and COSMO-RS predictions. <i>Journal of Chemical Thermodynamics</i> , 2017 , 115, 180-190	2.9	14
36	Screening solvents to extract phenol from aqueous solutions by the COSMO-SAC model and extraction process simulation. <i>Fluid Phase Equilibria</i> , 2017 , 451, 12-24	2.5	29
35	Understanding the Cellular Uptake of pH-Responsive Zwitterionic Gold Nanoparticles: A Computer Simulation Study. <i>Langmuir</i> , 2017 , 33, 14480-14489	4	20
34	Liquid [liquid Equilibrium of Ternary Systems of Methyl Isobutyl Ketone + o-Cresol + Water at 298.2, 313.2 and 323.2 K. <i>Journal of Solution Chemistry</i> , 2017 , 46, 2204-2213	1.8	4
33	Molecular Understanding of the Penetration of Functionalized Gold Nanoparticles into Asymmetric Membranes. <i>Langmuir</i> , 2017 , 33, 361-371	4	38
32	Measurement and thermodynamic modeling of ternary (liquid + liquid) equilibrium for extraction of o-cresol, m-cresol or p-cresol from aqueous solution with 2-pentanone. <i>Journal of Chemical Thermodynamics</i> , 2017 , 104, 230-238	2.9	22
31	Phase Behavior of an Amphiphilic Block Copolymer in Ionic Liquid: A Dissipative Particle Dynamics Study. <i>Journal of Chemical & Dissipative Particle Dynamics</i> Study. <i>Journal of Chemical & Dissipative Particle Dynami</i>	2.8	17
30	Experimental Determination and Correlation of Liquid Liquid Equilibria for Methyl Isopropyl Ketone + Phenol + Water Mixtures at 298.15, 313.15, and 323.15 K. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 2221-2225	2.8	18
29	Measurement and Correlation of Liquidliquid Equilibria for the Ternary Methyl Isobutyl Ketone + Phenol + Water System at (333.15, 343.15 and 353.15) K under Atmospheric Pressure. <i>Journal of Solution Chemistry</i> , 2016 , 45, 875-884	1.8	14
28	Ternary and Quaternary Liquidliquid Equilibria for Systems of Methyl Butyl Ketone + Water + Hydroquinone + Phenol at 313.2 K and Atmospheric Pressure. <i>Journal of Chemical &</i> Engineering Data, 2016 , 61, 1540-1546	2.8	7
27	Tie-Line Data for Aqueous Mixtures of Butyric Acid with Diisopropyl Ether at Various Temperatures. Journal of Chemical & Engineering Data, 2016, 61, 760-765	2.8	6
26	Measurements and thermodynamic modeling of liquid II quid equilibria in ternary system 2-methoxy-2-methylpropane+p-cresol+water. <i>Chinese Journal of Chemical Engineering</i> , 2016 , 24, 360-36	4 ^{2.2}	13
25	Liquid Liquid Equilibria for the Ternary System Mesityl Oxide + Phenol + Water at 298.15, 313.15, and 323.15 K. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 2493-2498	2.8	27
24	Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene. <i>Applied Surface Science</i> , 2016 , 377, 324-334	6.7	34
23	Phase Equilibrium for Phenol Extraction from Aqueous Solution with 2-Pentanone at Different Temperatures. <i>Journal of Solution Chemistry</i> , 2016 , 45, 1414-1424	1.8	14
22	Ternary liquid Liquid equilibria for methyl isopropyl ketone⊩[resorcinol or hydroquinone)⊩ water systems at different temperatures. <i>Fluid Phase Equilibria</i> , 2016 , 429, 93-97	2.5	22
21	Determination and modeling of liquid-liquid equilibrium for ternary mixtures of methyl isopropyl ketone, cresol isomers and water. <i>Fluid Phase Equilibria</i> , 2016 , 429, 107-112	2.5	21
20	Liquid-liquid equilibria for methyl isobutyl ketone + cresols + water at 333.15 K, 343.15 K and 353.15 K: Experimental results and data correlation. <i>Fluid Phase Equilibria</i> , 2016 , 427, 291-296	2.5	25

(2003-2015)

19	Liquid Ilquid equilibria in the ternary systems water + cresols + methyl butyl ketone at 298.2 and 313.2 K: Experimental data and correlation. <i>Fluid Phase Equilibria</i> , 2015 , 404, 89-95	2.5	27
18	Experimental Determination and Correlation of Liquidliquid Equilibria for the Ternary System 2-Methoxy-2-methylpropane + o-Cresol + Water at 298.15 K and 313.15 K. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 1396-1400	2.8	24
17	Liquid Diquid Phase Equilibria for the Ternary Water + Acetic Acid + 3,3-Dimethyl-2-butanone System at (298.15, 313.15 and 323.15) K. <i>Journal of Chemical & Chemical</i>	32 ⁸	1
16	Ternary Liquid Liquid Equilibria for the System 2-Methoxy-2-methylpropane + m-Cresol + Water at 298.15 and 313.15 K: Experimental Data and Correlation. <i>Journal of Solution Chemistry</i> , 2015 , 44, 2393-2	24 0 4	13
15	Phase equilibria of (water + propionic acid or butyric acid + 2-methoxy-2-methylpropane) ternary systems at 298.2 K and 323.2 K. <i>Fluid Phase Equilibria</i> , 2015 , 403, 30-35	2.5	26
14	Field-SEA: a model for computing the solvation free energies of nonpolar, polar, and charged solutes in water. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 6431-7	3.4	27
13	Liquid Diquid Equilibria for Ternary Systems: Methyl Butyl Ketone + Phenol + Water and Methyl Butyl Ketone + Hydroquinone + Water at 298.15 K and 323.15 K. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 2750-2755	2.8	44
12	Testing the semi-explicit assembly model of aqueous solvation in the SAMPL4 challenge. <i>Journal of Computer-Aided Molecular Design</i> , 2014 , 28, 259-64	4.2	8
11	Small molecule solvation changes due to the presence of salt are governed by the cost of solvent cavity formation and dispersion. <i>Journal of Chemical Physics</i> , 2014 , 141, 22D518	3.9	7
10	The different interactions of lysine and arginine side chains with lipid membranes. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 11906-20	3.4	176
9	The role of membrane thickness in charged protein-lipid interactions. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2012 , 1818, 135-45	3.8	55
8	Simple liquid models with corrected dielectric constants. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 693	6 5.4 4	54
7	Assessing atomistic and coarse-grained force fields for protein-lipid interactions: the formidable challenge of an ionizable side chain in a membrane. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 9588-602	3.4	99
6	Potential of mean force and pKa profile calculation for a lipid membrane-exposed arginine side chain. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 9574-87	3.4	102
5	Is arginine charged in a membrane?. <i>Biophysical Journal</i> , 2008 , 94, L11-3	2.9	74
4	Chapter 15 Charged Protein Side Chain Movement in Lipid Bilayers Explored with Free Energy Simulation. <i>Current Topics in Membranes</i> , 2008 , 405-459	2.2	2
3	A simple model for growth of semiconductor nanorods using lamellar precursors. <i>Materials Chemistry and Physics</i> , 2005 , 94, 1-6	4.4	9
2	Novel inorganic-organic-layered structures: crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E = S, Se, Te) nanorods in ethylenediamine. Inorganic Chemistry, 2003, 42, 2331-41	5.1	156

Solvent effect on xylose-to-furfural reaction in biphasic systems: combined experiments with theoretical calculations. *Green Chemistry*,

10 6