Antonio GarcÃ-a de Herreros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/129252/publications.pdf Version: 2024-02-01

		18465	22147
112	16,178	62	113
papers	citations	h-index	g-index
115 all docs	115 docs citations	115 times ranked	19427 citing authors

#	Article	IF	CITATIONS
1	The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2000, 2, 84-89.	4.6	2,355
2	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	16.1	1,195
3	A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes and Development, 2008, 22, 756-769.	2.7	592
4	A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition. Nature Cell Biology, 2009, 11, 943-950.	4.6	585
5	Regulation of E-cadherin/Catenin Association by Tyrosine Phosphorylation. Journal of Biological Chemistry, 1999, 274, 36734-36740.	1.6	533
6	Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene, 2007, 26, 7445-7456.	2.6	441
7	Snail Induction of Epithelial to Mesenchymal Transition in Tumor Cells Is Accompanied by MUC1 Repression andZEB1 Expression. Journal of Biological Chemistry, 2002, 277, 39209-39216.	1.6	407
8	Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. Journal of Clinical Investigation, 2012, 122, 1849-1868.	3.9	401
9	Polycomb Complex 2 Is Required for <i>E-cadherin</i> Repression by the Snail1 Transcription Factor. Molecular and Cellular Biology, 2008, 28, 4772-4781.	1.1	390
10	Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription. Journal of Cell Biology, 2005, 168, 29-33.	2.3	360
11	The Wnt antagonist DICKKOPF-1 gene is a downstream target of β-catenin/TCF and is downregulated in human colon cancer. Oncogene, 2005, 24, 1098-1103.	2.6	350
12	Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene, 2004, 23, 7345-7354.	2.6	315
13	p120 Catenin-Associated Fer and Fyn Tyrosine Kinases Regulate β-Catenin Tyr-142 Phosphorylation and β-Catenin-α-Catenin Interaction. Molecular and Cellular Biology, 2003, 23, 2287-2297.	1.1	304
14	Transcriptional crosstalk between TGFÎ ² and stem cell pathways in tumor cell invasion: Role of EMT promoting Smad complexes. Cell Cycle, 2010, 9, 2363-2374.	1.3	303
15	The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nature Medicine, 2004, 10, 917-919.	15.2	269
16	Loss of E-cadherin Expression in Melanoma Cells Involves Up-regulation of the Transcriptional Repressor Snail. Journal of Biological Chemistry, 2001, 276, 24661-24666.	1.6	253
17	Inhibition of integrin linked kinase (ILK) suppresses β-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APCâ^'/â^' human colon carcinoma cells. Oncogene, 2001, 20, 133-140.	2.6	241
18	Functional Cooperation between Snail1 and Twist in the Regulation of ZEB1 Expression during	1.6	239

#	Article	IF	CITATIONS
19	Cancerâ€associated fibroblast and <scp>M</scp> 2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Science, 2013, 104, 437-444.	1.7	235
20	Phosphorylation Regulates the Subcellular Location and Activity of the Snail Transcriptional Repressor. Molecular and Cellular Biology, 2003, 23, 5078-5089.	1.1	214
21	Snail Family Regulation and Epithelial Mesenchymal Transitions in Breast Cancer Progression. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 135-147.	1.0	205
22	Proteome Profiling of Cancer-Associated Fibroblasts Identifies Novel Proinflammatory Signatures and Prognostic Markers for Colorectal Cancer. Clinical Cancer Research, 2013, 19, 6006-6019.	3.2	199
23	Expression of Snail protein in tumor–stroma interface. Oncogene, 2006, 25, 5134-5144.	2.6	198
24	Repression of PTEN Phosphatase by Snail1 Transcriptional Factor during Gamma Radiation-Induced Apoptosis. Molecular and Cellular Biology, 2008, 28, 1528-1540.	1.1	171
25	E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Human Molecular Genetics, 2005, 14, 3361-3370.	1.4	168
26	Evidence for a role of protein kinase C zeta subspecies in maturation of Xenopus laevis oocytes Molecular and Cellular Biology, 1992, 12, 3776-3783.	1.1	164
27	Endothelin-1 Promotes Epithelial-to-Mesenchymal Transition in Human Ovarian Cancer Cells. Cancer Research, 2005, 65, 11649-11657.	0.4	161
28	Functional Heterogeneity of Cancer-Associated Fibroblasts from Human Colon Tumors Shows Specific Prognostic Gene Expression Signature. Clinical Cancer Research, 2013, 19, 5914-5926.	3.2	146
29	SPARC Represses E-Cadherin and Induces Mesenchymal Transition during Melanoma Development. Cancer Research, 2006, 66, 7516-7523.	0.4	145
30	The Hypoxia-controlled FBXL14 Ubiquitin Ligase Targets SNAIL1 for Proteasome Degradation. Journal of Biological Chemistry, 2010, 285, 3794-3805.	1.6	143
31	Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. Journal of Cell Biology, 2009, 184, 399-408.	2.3	140
32	Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Research, 2006, 34, 2077-2084.	6.5	135
33	E-cadherin controls β-catenin and NF-κB transcriptional activity in mesenchymal gene expression. Journal of Cell Science, 2008, 121, 2224-2234.	1.2	132
34	The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas. International Journal of Cancer, 2006, 119, 2098-2104.	2.3	128
35	Multivesicular GSK3 Sequestration upon Wnt Signaling Is Controlled by p120-Catenin/Cadherin Interaction with LRP5/6. Molecular Cell, 2014, 53, 444-457.	4.5	122
36	Snail2 cooperates with Snail1 in the repression of vitamin D receptor in colon cancer. Carcinogenesis, 2009, 30, 1459-1468.	1.3	119

#	Article	IF	CITATIONS
37	PARP-1 Regulates Metastatic Melanoma through Modulation of Vimentin-induced Malignant Transformation. PLoS Genetics, 2013, 9, e1003531.	1.5	115
38	Targeting Epithelial-to-Mesenchymal Transition with Met Inhibitors Reverts Chemoresistance in Small Cell Lung Cancer. Clinical Cancer Research, 2014, 20, 938-950.	3.2	110
39	The Transcriptional Factor Tcf-4 Contains Different Binding Sites for β-Catenin and Plakoglobin. Journal of Biological Chemistry, 2002, 277, 1884-1891.	1.6	106
40	The p65 subunit of NF-κB and PARP1 assist Snail1 in activating fibronectin transcription. Journal of Cell Science, 2011, 124, 4161-4171.	1.2	103
41	RhoA–ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells. Journal of Cell Biology, 2008, 183, 697-710.	2.3	102
42	Tyrosine Phosphorylation of Plakoglobin Causes Contrary Effects on Its Association with Desmosomes and Adherens Junction Components and Modulates β-Catenin-Mediated Transcription. Molecular and Cellular Biology, 2003, 23, 7391-7402.	1.1	98
43	Specific Phosphorylation of p120-Catenin Regulatory Domain Differently Modulates Its Binding to RhoA. Molecular and Cellular Biology, 2007, 27, 1745-1757.	1.1	96
44	F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. Seminars in Cancer Biology, 2016, 36, 71-79.	4.3	95
45	Snail1 Protein in the Stroma as a New Putative Prognosis Marker for Colon Tumours. PLoS ONE, 2009, 4, e5595.	1.1	93
46	Snail1-Expressing Fibroblasts in the Tumor Microenvironment Display Mechanical Properties That Support Metastasis. Cancer Research, 2015, 75, 284-295.	0.4	92
47	Regulation of Heterochromatin Transcription by Snail1/LOXL2 during Epithelial-to-Mesenchymal Transition. Molecular Cell, 2013, 52, 746-757.	4.5	91
48	The inhibition of Wnt/l²-catenin signalling by 1α,25-dihydroxyvitamin D3 is abrogated by Snail1 in human colon cancer cells. Endocrine-Related Cancer, 2007, 14, 141-151.	1.6	89
49	Epithelial–Mesenchymal Transition Induces an Antitumor Immune Response Mediated by NKG2D Receptor. Journal of Immunology, 2013, 190, 4408-4419.	0.4	89
50	Snail-dependent and -independent Epithelial-Mesenchymal Transition in Oral Squamous Carcinoma Cells. Journal of Histochemistry and Cytochemistry, 2006, 54, 1263-1275.	1.3	88
51	Regulation of the protein stability of EMT transcription factors. Cell Adhesion and Migration, 2014, 8, 418-428.	1.1	80
52	Epithelial to mesenchymal transition in early stage endometrioid endometrial carcinoma. Human Pathology, 2012, 43, 632-643.	1.1	75
53	Vascular endothelial growth factor-A stimulates Snail expression in breast tumor cells: Implications for tumor progression. Experimental Cell Research, 2008, 314, 2448-2453.	1.2	74
54	Lysyl oxidaseâ€like 2 (<scp>LOXL</scp> 2) oxidizes trimethylated lysine 4 in histone H3. FEBS Journal, 2016, 283, 4263-4273.	2.2	74

#	Article	IF	CITATIONS
55	Purification of a bovine liver S6 kinase. Biochemical and Biophysical Research Communications, 1987, 144, 891-899.	1.0	70
56	TGFβ-Activated USP27X Deubiquitinase Regulates Cell Migration and Chemoresistance via Stabilization of Snail1. Cancer Research, 2019, 79, 33-46.	0.4	70
57	Coordinated Action of CK1 Isoforms in Canonical Wnt Signaling. Molecular and Cellular Biology, 2011, 31, 2877-2888.	1.1	69
58	Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability. Nucleic Acids Research, 2014, 42, 1079-1094.	6.5	68
59	Cancer development induced by graded expression of Snail in mice. Human Molecular Genetics, 2005, 14, 3449-3461.	1.4	67
60	A p120-catenin–CK1ε complex regulates Wnt signaling. Journal of Cell Science, 2010, 123, 2621-2631.	1.2	67
61	Epithelial to mesenchymal transition markers are associated with an increased metastatic risk in primary cutaneous squamous cell carcinomas but are attenuated in lymph node metastases. Journal of Dermatological Science, 2013, 72, 93-102.	1.0	65
62	Snail1-Dependent Activation of Cancer-Associated Fibroblast Controls Epithelial Tumor Cell Invasion and Metastasis. Cancer Research, 2016, 76, 6205-6217.	0.4	65
63	Snail1 controls TGF-β responsiveness and differentiation of mesenchymal stem cells. Oncogene, 2013, 32, 3381-3389.	2.6	59
64	β-Catenin N- and C-terminal Tails Modulate the Coordinated Binding of Adherens Junction Proteins to β-Catenin. Journal of Biological Chemistry, 2002, 277, 31541-31550.	1.6	58
65	Wilms' Tumor Protein Induces an Epithelial-Mesenchymal Hybrid Differentiation State in Clear Cell Renal Cell Carcinoma. PLoS ONE, 2014, 9, e102041.	1.1	56
66	TWIST1 Is Expressed in Colorectal Carcinomas and Predicts Patient Survival. PLoS ONE, 2011, 6, e18023.	1.1	55
67	Intestinal HT-29 cells with dysfunction of E-cadherin show increased pp60src activity and tyrosine phosphorylation of p120-catenin. Biochemical Journal, 1996, 317, 279-284.	1.7	53
68	FGFR4 Role in Epithelial-Mesenchymal Transition and Its Therapeutic Value in Colorectal Cancer. PLoS ONE, 2013, 8, e63695.	1.1	51
69	Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential l²-catenin phosphorylation. Journal of Cell Science, 2008, 121, 2718-2730.	1.2	49
70	Wnt controls the transcriptional activity of Kaiso through CK1ε-dependent phosphorylation of p120-catenin. Journal of Cell Science, 2011, 124, 2298-2309.	1.2	49
71	β-Catenin and Plakoglobin N- and C-tails Determine Ligand Specificity. Journal of Biological Chemistry, 2004, 279, 49849-49856.	1.6	47
72	Epithelial-mesenchymal transition downregulates laminin α5 chain and upregulates laminin α4 chain in oral squamous carcinoma cells. Histochemistry and Cell Biology, 2008, 130, 509-525.	0.8	47

#	Article	IF	CITATIONS
73	Nuclear Snail1 and nuclear ZEB1 protein expression in invasive and intraductal human breast carcinomas. Human Pathology, 2011, 42, 1125-1131.	1.1	44
74	Snail1-driven plasticity of epithelial and mesenchymal cells sustains cancer malignancy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 55-61.	3.3	44
75	Bioactivity descriptors for uncharacterized chemical compounds. Nature Communications, 2021, 12, 3932.	5.8	44
76	Snail1: A Transcriptional Factor Controlled at Multiple Levels. Journal of Clinical Medicine, 2019, 8, 757.	1.0	43
77	Transformation stimulates glucose transporter gene expression in the absence of protein kinase C Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8252-8256.	3.3	42
78	Vitamin D and the Epithelial to Mesenchymal Transition. Stem Cells International, 2016, 2016, 1-11.	1.2	42
79	LOXL2 Oxidizes Methylated TAF10 and Controls TFIID-Dependent Genes during Neural Progenitor Differentiation. Molecular Cell, 2015, 58, 755-766.	4.5	41
80	Phospholipase C-mediated hydrolysis of phosphatidylcholine is a target of transforming growth factor beta 1 inhibitory signals Molecular and Cellular Biology, 1992, 12, 302-308.	1.1	40
81	Role of GTPase activating protein in mitogenic signalling through phosphatidylcholine-hydrolysing phospholipase C EMBO Journal, 1991, 10, 3215-3220.	3.5	38
82	Cooperation, amplification, and feed-back in epithelial–mesenchymal transition. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1825, 223-228.	3.3	36
83	Protumorigenic effects of Snailâ€expression fibroblasts on colon cancer cells. International Journal of Cancer, 2014, 134, 2984-2990.	2.3	36
84	Rac1 activation upon Wnt stimulation requires Rac1 and Vav2 binding to p120-catenin. Journal of Cell Science, 2012, 125, 5288-301.	1.2	35
85	Intracellular Signals Activated by Canonical Wnt Ligands Independent of GSK3 Inhibition and β-Catenin Stabilization. Cells, 2019, 8, 1148.	1.8	35
86	Independent regulation of adherens and tight junctions by tyrosine phosphorylation in Caco-2 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1452, 121-132.	1.9	31
87	Novel Snail1 Target Proteins in Human Colon Cancer Identified by Proteomic Analysis. PLoS ONE, 2010, 5, e10221.	1.1	29
88	lsolation of tissue-type plasminogen activator, cathepsin H, and non-specific cross-reacting antigen from SK-PC-1 pancreas cancer cells using subtractive hybridization. FEBS Letters, 1996, 385, 72-76.	1.3	27
89	Akt2 interacts with Snail1 in the E-cadherin promoter. Oncogene, 2012, 31, 4022-4033.	2.6	27
90	Snail1 Expression Is Required for Sarcomagenesis. Neoplasia, 2014, 16, 413-421.	2.3	24

#	Article	IF	CITATIONS
91	p120-catenin in canonical Wnt signaling. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 327-339.	2.3	23
92	Src and Fyn define a new signaling cascade activated by canonical and non-canonical Wnt ligands and required for gene transcription and cell invasion. Cellular and Molecular Life Sciences, 2020, 77, 919-935.	2.4	22
93	TFCP2c/LSF/LBP-1c is required for Snail1-induced fibronectin gene expression. Biochemical Journal, 2011, 435, 563-568.	1.7	21
94	A Switch in Akt Isoforms Is Required for Notch-Induced Snail1 Expression and Protection from Cell Death. Molecular and Cellular Biology, 2016, 36, 923-940.	1.1	19
95	Gender verification in sports by PCR amplification of SRY and DYZ1 Y chromosome specific sequences: presence of DYZ1 repeat in female athletes British Journal of Sports Medicine, 1996, 30, 310-312.	3.1	17
96	Gamma-Secretase-Dependent and -Independent Effects of Presenilin1 on β-Catenin·Tcf-4 Transcriptional Activity. PLoS ONE, 2008, 3, e4080.	1.1	17
97	Antipeptide antibodies directed against the C-terminus of protein kinase Cζ (PKCζ) react with a Ca2+- and TPA-sensitive PKC in HT-29 human intestinal epithelial cells. FEBS Letters, 1994, 344, 161-165.	1.3	15
98	Presenilin-1 Interacts with Plakoglobin and Enhances Plakoglobin-Tcf-4 Association. Journal of Biological Chemistry, 2006, 281, 1401-1411.	1.6	14
99	The protein kinase C activator TPA modulates cellular levels and distribution of E-cadherin in HT-29 human intestinal epithelial cells. FEBS Letters, 1995, 374, 415-418.	1.3	12
100	Epithelial-to-Mesenchymal Transition in Penile Squamous Cell Carcinoma. Journal of Urology, 2015, 193, 699-705.	0.2	12
101	CK 1ε and p120 atenin control Ror2 function in noncanonical Wnt signaling. Molecular Oncology, 2018, 12, 611-629.	2.1	12
102	Epithelial to mesenchymal transition in tumor cells as consequence of phenotypic instability. Frontiers in Cell and Developmental Biology, 2014, 2, 71.	1.8	11
103	Splicing of a non-coding antisense transcript controls <i>LEF1</i> gene expression. Nucleic Acids Research, 2015, 43, 5785-5797.	6.5	10
104	Determination of genetic sex by PCR amplification of Y-chromosome-specific sequences. Lancet, The, 1993, 341, 1593.	6.3	8
105	The role of DUBs in the post-translational control of cell migration. Essays in Biochemistry, 2019, 63, 579-594.	2.1	8
106	Adenomatous polyposis coli protein (APC)-independent regulation of β-catenin/Tcf-4 mediated transcription in intestinal cells. Biochemical Journal, 1999, 344, 565.	1.7	5
107	APC 3×15 β-catenin-binding domain potentiates β-catenin association to TBP and upregulates TCF-4 transcriptional activity. Biochemical and Biophysical Research Communications, 2003, 309, 830-835.	1.0	5
108	The Epithelial-to-Mesenchymal Transition (EMT), a Particular Case. Molecular and Cellular Oncology, 2014, 1, e960770.	0.3	5

#	Article	IF	CITATIONS
109	Phosphorylation of Endothelin-Converting Enzyme-1c at Serines 18 and 20 by CK2 Promotes Aggressiveness Traits in Colorectal Cancer Cells. Frontiers in Oncology, 2020, 10, 1004.	1.3	5
110	Invasive cells follow Snail's slow and persistent pace. Cell Cycle, 2014, 13, 2320-2321.	1.3	3
111	Activation of an insulin-stimulated S6 kinase in 3T3 L1 cell-free extracts by proteolysis. FEBS Letters, 1989, 248, 53-56.	1.3	1
112	181 Determination of Snail1 Paracrine Functions – Implication in Pro-tumorogenic Abilities on Colorectal Epithelial Cells Lines. European Journal of Cancer, 2012, 48, S44.	1.3	0