
Manickam Jayakannan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1292450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical and Redox Properties of a Series of 3,4-Ethylenedioxythiophene Oligomers. Chemistry - A European Journal, 2002, 8, 2384.	3.3	172
2	Solventâ€free and nonisocyanate melt transurethane reaction for aliphatic polyurethanes and mechanistic aspects. Journal of Polymer Science Part A, 2008, 46, 2445-2458.	2.3	90
3	Core–shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells. Nanoscale, 2015, 7, 17964-17979.	5.6	81
4	Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells. Nanoscale, 2015, 7, 6636-6652.	5.6	78
5	Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core–Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Biomacromolecules, 2016, 17, 384-398.	5.4	52
6	Polysaccharide nano-vesicular multidrug carriers for synergistic killing of cancer cells. Nanoscale, 2014, 6, 11841-11855.	5.6	51
7	Recent Developments in Polyether Synthesis. Macromolecular Rapid Communications, 2001, 22, 1463.	3.9	47
8	Development of <scp>l</scp> -Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells. Biomacromolecules, 2017, 18, 189-200.	5.4	47
9	Cisplatin-Stitched Polysaccharide Vesicles for Synergistic Cancer Therapy of Triple Antagonistic Drugs. Biomacromolecules, 2017, 18, 113-126.	5.4	46
10	Biotin-Tagged Polysaccharide Vesicular Nanocarriers for Receptor-Mediated Anticancer Drug Delivery in Cancer Cells. Biomacromolecules, 2018, 19, 3572-3585.	5.4	43
11	Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on ï€-Conjugated Core and Biodegradable Polymer Arms. Biomacromolecules, 2016, 17, 1004-1016.	5.4	39
12	Carboxylicâ€functionalized water soluble Ï€â€conjugated polymer: Highly selective and efficient chemosensor for mercury(II) ions. Journal of Polymer Science Part A, 2009, 47, 5144-5157.	2.3	38
13	Structural Engineering of Biodegradable PCL Block Copolymer Nanoassemblies for Enzyme-Controlled Drug Delivery in Cancer Cells. ACS Biomaterials Science and Engineering, 2016, 2, 1926-1941.	5.2	34
14	Selfâ€assembled anionic micellar template for polypyrrole, polyaniline, and their random copolymer nanomaterials. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 830-846.	2.1	33
15	Triple Block Nanocarrier Platform for Synergistic Cancer Therapy of Antagonistic Drugs. Biomacromolecules, 2016, 17, 4075-4085.	5.4	32
16	Development of <scp>l</scp> -Lysine Based Biodegradable Polyurethanes and Their Dual-Responsive Amphiphilic Nanocarriers for Drug Delivery to Cancer Cells. ACS Applied Polymer Materials, 2019, 1, 1866-1880.	4.4	32
17	Multistimuli-Responsive Amphiphilic Poly(ester-urethane) Nanoassemblies Based on <scp>l</scp> -Tyrosine for Intracellular Drug Delivery to Cancer Cells. Biomacromolecules, 2018, 19, 2166-2181.	5.4	31
18	Polymer Topology Driven Enzymatic Biodegradation in Polycaprolactone Block and Random Copolymer Architectures for Drug Delivery to Cancer Cells. Macromolecules, 2016, 49, 8098-8112.	4.8	30

#	Article	IF	CITATIONS
19	Color-Tunable Amphiphilic Segmented π-Conjugated Polymer Nano-Assemblies and Their Bioimaging in Cancer Cells. Macromolecules, 2016, 49, 4102-4114.	4.8	28
20	Enzyme and pH dual responsive <scp>l</scp> -amino acid based biodegradable polymer nanocarrier for multidrug delivery to cancer cells. Journal of Polymer Science Part A, 2016, 54, 3279-3293.	2.3	28
21	Ï€-Conjugate Fluorophore-Tagged and Enzyme-Responsive <scp>l</scp> -Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells. Biomacromolecules, 2017, 18, 2594-2609.	5.4	26
22	Amyloid-Like Hierarchical Helical Fibrils and Conformational Reversibility in Functional Polyesters Based on <scp>l</scp> -Amino Acids. Biomacromolecules, 2015, 16, 1009-1020.	5.4	23
23	Real-Time Drug Release Analysis of Enzyme and pH Responsive Polysaccharide Nanovesicles. Journal of Physical Chemistry B, 2015, 119, 10511-10523.	2.6	23
24	Melt polycondensation approach for reduction degradable helical polyester based on <scp>l</scp> â€cystine. Journal of Polymer Science Part A, 2016, 54, 2864-2875.	2.3	22
25	An AIE-driven fluorescent polysaccharide polymersome as an enzyme-responsive FRET nanoprobe to study the real-time delivery aspects in live cells. Polymer Chemistry, 2021, 12, 1549-1561.	3.9	22
26	Polyurethane–oligo(phenylenevinylene) random copolymers: Ï€â€Conjugated pores, vesicles, and nanospheres via solventâ€induced selfâ€organization. Journal of Polymer Science Part A, 2008, 46, 5897-5915.	2.3	21
27	Largeâ€scale synthesis of polyaniline nanofibers based on renewable resource molecular template. Journal of Applied Polymer Science, 2009, 114, 3531-3541.	2.6	21
28	Thermo-responsive and shape transformable amphiphilic scaffolds for loading and delivering anticancer drugs. Journal of Materials Chemistry B, 2014, 2, 4142.	5.8	21
29	Control of molecular aggregation in symmetrically substituted Ï€â€conjugated bulky poly(<i>p</i> â€phenylenevinylene)s and their copolymers. Journal of Polymer Science Part A, 2009, 47, 2631-2646.	2.3	20
30	Fluorescent-Tagged Biodegradable Polycaprolactone Block Copolymer FRET Probe for Intracellular Bioimaging in Cancer Cells. ACS Biomaterials Science and Engineering, 2017, 3, 2185-2197.	5.2	19
31	Biodegradable Block Copolymer Scaffolds for Loading and Delivering Cisplatin Anticancer Drug. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1119-1126.	1.2	18
32	Development of <scp>l</scp> -Amino-Acid-Based Hydroxyl Functionalized Biodegradable Amphiphilic Polyesters and Their Drug Delivery Capabilities to Cancer Cells. Biomacromolecules, 2020, 21, 171-187.	5.4	18
33	One-pot two polymers: ABB′ melt polycondensation for linear polyesters and hyperbranched poly(ester-urethane)s based on natural <scp>I</scp> -amino acids. Polymer Chemistry, 2015, 6, 4641-4649.	3.9	17
34	Herringbone and Helical Selfâ€Assembly of Ï€â€Conjugated Molecules in the Solid State through CH/Ï€ Hydrogen Bonds. Chemistry - A European Journal, 2012, 18, 11987-11993.	3.3	16
35	CH/ï€â€Interactionâ€Guided Selfâ€Assembly in ï€â€Conjugated Oligomers. Chemistry - A European Journal, 20 18, 2867-2874.)12, 3.3	16
36	Helical Self-Assemblies of Segmented Poly(phenylenevinylene)s and Their Hierarchical Donor–Acceptor Complexes. Macromolecules, 2014, 47, 2592-2603.	4.8	16

#	Article	IF	CITATIONS
37	Catalysts and temperature driven melt polycondensation reaction for helical poly(ester-urethane)s based on natural L-amino acids. Journal of Polymer Science Part A, 2016, 54, 1065-1077.	2.3	16
38	Enzyme-Responsive Theranostic FRET Probe Based on <scp>l</scp> -Aspartic Amphiphilic Polyester Nanoassemblies for Intracellular Bioimaging in Cancer Cells. ACS Applied Bio Materials, 2019, 2, 5245-5262.	4.6	16
39	Renewable resourceâ€based poly (<i>m</i> â€phenylenevinylene)s and their statistical copolymers: Synthesis, characterization, and probing of molecular aggregation and Forster energy transfer processes. Journal of Polymer Science Part A, 2008, 46, 3241-3256.	2.3	15
40	Heavy Atom Effect Driven Organic Phosphors and Their Luminescent Lanthanide Metal–Organic Frameworks. ChemPlusChem, 2013, 78, 737-745.	2.8	15
41	Ï€-Conjugated Polymer Anisotropic Organogel Nanofibrous Assemblies for Thermoresponsive Photonic Switches. ACS Applied Materials & Interfaces, 2014, 6, 19385-19396.	8.0	15
42	Perylene-Tagged Polycaprolactone Block Copolymers and Their Enzyme-Biodegradable Fluorescent Nanoassemblies for Intracellular Bio-imaging in Cancer Cells. ACS Applied Polymer Materials, 2019, 1, 3375-3388.	4.4	15
43	Biodegradable Polymer Theranostic Fluorescent Nanoprobe for Direct Visualization and Quantitative Determination of Antimicrobial Activity. Biomacromolecules, 2020, 21, 2896-2912.	5.4	15
44	Polymer Nanovesicle-Mediated Delivery of MLN8237 Preferentially Inhibits Aurora Kinase A To Target RalA and Anchorage-Independent Growth in Breast Cancer Cells. Molecular Pharmaceutics, 2018, 15, 3046-3059.	4.6	11
45	New amphiphilic sulfonic acid dopantâ€cumâ€templates for diverse conducting polyaniline nanomaterials. Journal of Applied Polymer Science, 2013, 127, 1781-1793.	2.6	10
46	Direct Evidence for Secondary Interactions in Planar and Nonplanar Aromatic π-Conjugates and Their Photophysical Characteristics in Solid-State Assemblies. Journal of Physical Chemistry B, 2015, 119, 5102-5112.	2.6	8
47	Tertiary-Butylbenzene Functionalization as a Strategy for β-Sheet Polypeptides. Biomacromolecules, 2022, 23, 2667-2684.	5.4	7
48	Super LCST thermo-responsive nanoparticle assembly for ATP binding through the Hofmeister effect. Journal of Materials Chemistry B, 2015, 3, 1957-1967.	5.8	6
49	Fluorescent ABCâ€Triblock Polymer Nanocarrier for Cisplatin Delivery to Cancer Cells. Chemistry - an Asian Journal, 2022, 17, .	3.3	6
50	Self-Reporting Polysaccharide Polymersome for Doxorubicin and Cisplatin Delivery to Live Cancer Cells. ACS Polymers Au, 2022, 2, 181-193.	4.1	5