Marina Barbiroli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1292365/publications.pdf

Version: 2024-02-01

	687363	580821
760	13	25
citations	h-index	g-index
67	67	835
docs citations	times ranked	citing authors
	citations 67	760 13 citations h-index 67 67

#	Article	IF	CITATIONS
1	A Ray Tracing Tool for Propagation Modeling in Layered Media: A Case Study at the Chip Scale. IEEE Open Journal of Antennas and Propagation, 2022, 3, 249-262.	3.7	2
2	Multi-Band Outdoor-to-Indoor Propagation Measurements Using a Drone., 2022,,.		3
3	A Study on Physical Layer Security Through Ray Tracing Simulations. , 2022, , .		1
4	IRACON channel measurements and models. , 2021, , 49-105.		4
5	Characterizing the UAV-to-Machine UWB Radio Channel in Smart Factories. IEEE Access, 2021, 9, 76542-76550.	4.2	5
6	An UAV-Based Experimental Setup for Propagation Characterization in Urban Environment. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	4.7	8
7	A Multi-Frequency Investigation of Air-to-Ground Urban Propagation Using a GPU-Based Ray Launching Algorithm. IEEE Access, 2021, 9, 54407-54419.	4.2	6
8	Numerical and Experimental Analysis of On-Chip Optical Wireless Links in Presence of Obstacles. IEEE Photonics Journal, 2021, 13, 1-11.	2.0	8
9	Ray Tracing Channel Modeling for Optical Wireless Networks On-Chip. , 2021, , .		1
10	Design of reconfigurable on-chip wireless interconnections through Optical Phased Arrays. Optics Express, 2021, 29, 31212.	3.4	12
11	Reconfigurable on-chip wireless interconnections through optical phased arrays (Invited). , 2021, , .		o
12	Multi-Path Propagation in On-Chip Optical Wireless Links. IEEE Photonics Technology Letters, 2020, 32, 1101-1104.	2.5	12
13	Narrowband Characteristics of Air-to-Ground Propagation for UAV Assisted Networks in Urban Environments By Means of Fast Ray-Launching Simulations. , 2020, , .		3
14	Assessment of On-chip Wireless Communication Networks Based on Integrated Dielectric Antennas. , 2020, , .		1
15	Improved Fabryâ€Pérot Electromagnetic Material Characterization: Application and Results. Radio Science, 2020, 55, e2020RS007164.	1.6	5
16	Transmission loss evaluation for Fabry-Perot materials' characterization. , 2020, , .		1
17	Multi-Level Analysis of On-Chip Optical Wireless Links. Applied Sciences (Switzerland), 2020, 10, 196.	2.5	11
18	Lightweight Microstrip Patch Array for Broadband UAV Applications over 5G networks. , 2019, , .		4

#	Article	IF	CITATIONS
19	Tuning Ray Tracing for Mmâ€wave Coverage Prediction in Outdoor Urban Scenarios. Radio Science, 2019, 54, 1112-1128.	1.6	5
20	HABITAT: An IoT Solution for Independent Elderly. Sensors, 2019, 19, 1258.	3.8	74
21	A Study on Millimeter-Wave Multiuser Directional Beamforming Based on Measurements and Ray Tracing Simulations. IEEE Transactions on Antennas and Propagation, 2019, 67, 2633-2644.	5.1	18
22	A Discrete Environment-Driven GPU-Based Ray Launching Algorithm. IEEE Transactions on Antennas and Propagation, 2019, 67, 1180-1192.	5.1	31
23	Dielectric and Plasmonic Vivaldi Antennas for On-Chip Wireless Communication. , 2019, , .		7
24	IoT Enabling Technologies for Extreme Connectivity Smart Grid Applications. , 2019, , .		7
25	Ray Tracing Modeling of Electromagnetic Propagation for On-Chip Wireless Optical Communications. Journal of Low Power Electronics and Applications, 2018, 8, 39.	2.0	15
26	Tri-Band Mm-wave Directional Channel Measurements in Indoor Environment., 2018,,.		9
27	Radio Frequency Electromagnetic Field Exposure Assessment for future 5G networks., 2018,,.		6
28	On-chip Wireless Optical Communication Through Plasmonic Nanoantennas. , 2018, , .		1
29	26GHz ray-tracing pathloss prediction in outdoor scenario in presence of vegetation. , 2018, , .		10
30	Efficient RF Coverage Prediction through a fully Discrete, GPU-Parallelized Ray-Launching model., 2018,,.		3
31	On-Chip Wireless Optical Communication: From Antenna Design to Channel Modelling. , 2018, , .		0
32	Integrated Vivaldi antennas, an enabling technology for optical wireless networks on chip. , 2018, , .		4
33	A study on the performance of over-roof-top propagation models in dense urban environment. , 2018, , .		1
34	Smart Metering Wireless Networks at 169 MHz. IEEE Access, 2017, 5, 8357-8368.	4.2	13
35	Analysis of In-Room mm-Wave Propagation: Directional Channel Measurements and Ray Tracing Simulations. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38, 727-744.	2.2	35
36	Synchrophasors-Based Distributed Secondary Voltage/VAR Control via Cellular Network. IEEE Transactions on Smart Grid, 2017, 8, 262-274.	9.0	33

#	Article	IF	Citations
37	A Semi-Deterministic Model for Outdoor-to-Indoor Prediction in Urban Areas. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2412-2415.	4.0	11
38	A Method for the Electromagnetic Characterization of Construction Materials Based on Fabry–Pérot Resonance. IEEE Access, 2017, 5, 24938-24943.	4.2	11
39	A study on mm-Wave multi-user indoor beamforming. , 2017, , .		0
40	A semi-deterministic method for predicting indoor cellular coverage in dense urban areas. , 2016, , .		3
41	Item level characterization of mm-wave indoor propagation. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	2.4	16
42	Chirp evaluation of semiconductor DFB lasers through a simple Interferometry-Based (IB) technique. Applied Optics, 2016, 55, 7788.	2.1	15
43	Ray tracing propagation modeling for future small-cell and indoor applications: A review of current techniques. Radio Science, 2015, 50, 469-485.	1.6	81
44	Ray Tracing RF Field Prediction: An Unforgiving Validation. International Journal of Antennas and Propagation, 2015, 2015, 1-11.	1,2	15
45	Analysis of Outdoor-to-Indoor Propagation at 169 MHz for Smart Metering Applications. IEEE Transactions on Antennas and Propagation, 2015, 63, 1811-1821.	5.1	14
46	Reactive power control of photovoltaic units over wireless cellular networks. , 2015, , .		2
47	Ray-Tracing-Based mm-Wave Beamforming Assessment. IEEE Access, 2014, 2, 1314-1325.	4.2	135
48	A C/I based approach to setting the maximum EIRP levels for database-assisted WSDs. , 2014, , .		0
49	Consolidating the Electromagnetic Education of Graduate Students Through an Integrated Course. IEEE Transactions on Education, 2013, 56, 416-423.	2.4	5
50	A study on the energy efficiency of urban cellular radio deployment solutions. , 2012, , .		1
51	Analysis and evaluation of Metropolitan Mesh Machine networks performance in Smart Grid and Smart Metering scenarios. , 2012, , .		0
52	White Spaces potentially available in Italian scenarios based on the geo-location database approach., 2012,,.		5
53	Coexistence and Mutual Interference between Mobile and Broadcasting Systems. , 2011, , .		19
54	Advantages and disadvantages of the introduction of IMT systems at 800 MHz band. , $2011, \dots$		1

#	Article	IF	Citations
55	Assessment of Population and Occupational Exposure to Wi-Fi Systems: Measurements and Simulations. IEEE Transactions on Electromagnetic Compatibility, 2011, 53, 219-228.	2.2	11
56	Planning criteria to improve energy efficiency of mobile radio systems. , 2011 , , .		3
57	Experimental characterisation of WiMAX propagation in different environments. , 2011, , .		1
58	Effect of WiMAX system introduction over general public exposure: Simulation and measurements. , 2010, , .		0
59	Evaluation of exposure levels generated by WiMAX systems. , 2009, , .		0
60	Analysis of macrocellular and microcellular coverage with attention to exposure levels. , 2008, , .		1
61	A new statistical approach for urban environment propagation modeling. IEEE Transactions on Vehicular Technology, 2002, 51, 1234-1241.	6.3	11
62	Evaluation of exposure levels generated by cellular systems: methodology and results. IEEE Transactions on Vehicular Technology, 2002, 51, 1322-1329.	6.3	18
63	Analysis of the Environmental Factors for Microcellular Systems in Urban Areas. Radiation Protection Dosimetry, 2001, 97, 391-394.	0.8	0
64	A measurement-based methodology for the determination of validity domains of prediction models in urban environment. IEEE Transactions on Vehicular Technology, 2000, 49, 1508-1515.	6.3	7
65	Extraction of a Simplified Model for Street Corner Loss in Microcells from Ray-Tracing Simulation. Wireless Personal Communications, 2000, 12, 225-237.	2.7	2
66	Analysis of field strength levels near base station antennas. , 1999, , .		9
67	A new methodology for the identification of validity domains of prediction models in urban environment. , 0, , .		4