Andreas Nocke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1292316/publications.pdf Version: 2024-02-01

ANDREAS NOCKE

#	Article	IF	CITATIONS
1	Experimental Investigation and Modeling of the Dynamic Resistance Response of Carbon Particleâ€Filled Polymers. Macromolecular Materials and Engineering, 2020, 305, 2000361.	3.6	23
2	Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns. Polymers, 2021, 13, 590.	4.5	19
3	Highâ€Displacement, Fiberâ€Reinforced Shape Memory Alloy Soft Actuator with Integrated Sensors and Its Equivalent Network Model. Advanced Intelligent Systems, 2021, 3, 2000221.	6.1	19
4	Manufacturing technology of integrated textile-based sensor networks for <i>in situ</i> monitoring applications of composite wind turbine blades. Smart Materials and Structures, 2016, 25, 105012.	3.5	16
5	Influence of defined amount of voids on the mechanical properties of carbon fiberâ€reinforced plastics. Polymer Composites, 2019, 40, E1049-E1056.	4.6	15
6	Adaptive hinged fiber reinforced plastics with tailored shape memory alloy hybrid yarn. Polymer Composites, 2020, 41, 191-200.	4.6	14
7	Polymer composite strain sensor based on dielectrophoretically aligned tellurium nanorods. Procedia Chemistry, 2009, 1, 1151-1154.	0.7	9
8	High-Speed, Helical and Self-Coiled Dielectric Polymer Actuator. Actuators, 2021, 10, 15.	2.3	9
9	Dielectrophoretic alignment of polymer compounds for thermal sensing. Sensors and Actuators A: Physical, 2009, 156, 164-170.	4.1	8
10	Development and testing of controlled adaptive fiber-reinforced elastomer composites. Textile Reseach Journal, 2018, 88, 345-353.	2.2	8
11	Stretchable and Compliant Textile Strain Sensors. IEEE Sensors Journal, 2021, 21, 25632-25640.	4.7	7
12	High temperature resistant insulated hybrid yarns for carbon fiber reinforced thermoplastic composites. Journal of Applied Polymer Science, 2013, 130, 1179-1184.	2.6	6
13	Development of a Function-Integrative Sleeve for Medical Applications. Sensors, 2019, 19, 2588.	3.8	3
14	Integrated Temperature and Position Sensors in a Shape-Memory Driven Soft Actuator for Closed-Loop Control. Materials, 2022, 15, 520.	2.9	3
15	Monitoring the Joint Area of Composite Membrane Materials. Applied Sciences (Switzerland), 2019, 9, 2068.	2.5	2
16	Non-Monotonic Sensor Behavior of Carbon Particle-Filled Textile Strain Sensors. Engineering Proceedings, 2021, 6, 13.	0.4	1
17	Technological Development of a Yarn Grip System for High-Speed Tensile Testing of High-Performance Fibers. Autex Research Journal, 2019, 19, 347-354.	1.1	1
18	Nanoparticle-Based Resistors and Conductors. , 2012, , 305-318.		0

#	Article	IF	CITATIONS
19	Development of an Elastic, Electrically Conductive Coating for TPU Filaments. Materials, 2021, 14, 7158.	2.9	0
20	Manufacturing of a helical, self-coiling dielectric polymer actuator. , 2020, 64, .		0
21	Melt Spinning of Elastic and Electrically Conductive Filament Yarns and their Usage as Strain Sensors. Solid State Phenomena, 0, 333, 81-89.	0.3	0