
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1291850/publications.pdf Version: 2024-02-01

CHAO DENC

#	Article	IF	CITATIONS
1	Phenylboronic Acid-Functionalized Copolypeptides: Facile Synthesis and Responsive Dual Anticancer Drug Release. Biomacromolecules, 2022, 23, 2989-2998.	2.6	10
2	Brain delivery of Plk1 inhibitor via chimaeric polypeptide polymersomes for safe and superb treatment of orthotopic glioblastoma. Journal of Controlled Release, 2021, 329, 1139-1149.	4.8	29
3	Doxorubicin Delivered via ApoE-Directed Reduction-Sensitive Polymersomes Potently Inhibit Orthotopic Human Glioblastoma Xenografts in Nude Mice. International Journal of Nanomedicine, 2021, Volume 16, 4105-4115.	3.3	18
4	Enzyme-responsive micellar JQ1 induces enhanced BET protein inhibition and immunotherapy of malignant tumors. Biomaterials Science, 2021, 9, 6915-6926.	2.6	13
5	CD44-Targeted Multifunctional Nanomedicines Based on a Single-Component Hyaluronic Acid Conjugate with All-Natural Precursors: Construction and Treatment of Metastatic Breast Tumors <i>in Vivo</i> . Biomacromolecules, 2020, 21, 104-113.	2.6	23
6	Targeted and Reduction-Sensitive Cross-Linked PLGA Nanotherapeutics for Safer and Enhanced Chemotherapy of Malignant Melanoma. ACS Biomaterials Science and Engineering, 2020, 6, 2621-2629.	2.6	6
7	Coatingâ€5heddable CD44â€Targeted Poly(d , l ″actide―co â€glycolide) Nanomedicines Fabricated by Using Photoclickâ€Crosslinkable Surfactant. Advanced Therapeutics, 2020, 3, 1900160.	1.6	0
8	Efficient and Stable Organic Light-Emitting Diodes Employing Indolo[2,3- <i>b</i>]indole-Based Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2020, 12, 6127-6136.	4.0	23
9	Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Advanced Drug Delivery Reviews, 2020, 160, 199-211.	6.6	52
10	Weakly Conjugated Phosphine Oxide Hosts for Efficient Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 30591-30599.	4.0	11
11	High Fluorescence Rate of Thermally Activated Delayed Fluorescence Emitters for Efficient and Stable Blue OLEDs. ACS Applied Materials & Interfaces, 2020, 12, 31706-31715.	4.0	27
12	Expanding the hole delocalization range in excited molecules for stable organic light-emitting diodes employing thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2020, 8, 10021-10030.	2.7	14
13	Difluoroboron-Enabled Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2019, 11, 32209-32217.	4.0	46
14	Oncoprotein Inhibitor Rigosertib Loaded in ApoE-Targeted Smart Polymersomes Reveals High Safety and Potency against Human Glioblastoma in Mice. Molecular Pharmaceutics, 2019, 16, 3711-3719.	2.3	32
15	Improving the Stability of Green Thermally Activated Delayed Fluorescence OLEDs by Reducing the Excited-State Dipole Moment. Journal of Physical Chemistry C, 2019, 123, 29875-29883.	1.5	22
16	Nanoagents Based on Poly(ethylene glycol)â€≺i>bâ€Poly(<scp>l</scp> â€thyroxine) Block Copolypeptide for Enhanced Dualâ€Modality Imaging and Targeted Tumor Radiotherapy. Small, 2019, 15, e1902577.	5.2	15
17	Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules, 2019, 20, 4299-4311.	2.6	27
18	Saporin-loaded CD44 and EGFR dual-targeted nanogels for potent inhibition of metastatic breast cancer in vivo. International Journal of Pharmaceutics, 2019, 560, 57-64.	2.6	36

#	Article	IF	CITATIONS
19	Selective Cell Penetrating Peptideâ€Functionalized Envelopeâ€Type Chimeric Lipopepsomes Boost Systemic RNAi Therapy for Lung Tumors. Advanced Healthcare Materials, 2019, 8, e1900500.	3.9	36
20	Small, Traceable, Endosome-Disrupting, and Bioresponsive Click Nanogels Fabricated via Microfluidics for CD44-Targeted Cytoplasmic Delivery of Therapeutic Proteins. ACS Applied Materials & Interfaces, 2019, 11, 22171-22180.	4.0	49
21	Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet–Triplet Splitting With Large Fluorescence Rate. Frontiers in Chemistry, 2019, 7, 312.	1.8	17
22	cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. Journal of Controlled Release, 2019, 301, 110-118.	4.8	75
23	Functionalization of soft materials for cardiac repair and regeneration. Critical Reviews in Biotechnology, 2019, 39, 451-468.	5.1	3
24	Reductively cleavable polymer-drug conjugates based on dendritic polyglycerol sulfate and monomethyl auristatin E as anticancer drugs. Journal of Controlled Release, 2019, 300, 13-21.	4.8	25
25	Exciton―and Polaronâ€Induced Reversible Dipole Reorientation in Amorphous Organic Semiconductor Films. Advanced Optical Materials, 2019, 7, 1801644.	3.6	44
26	A three-dimensional ratiometric sensing strategy on unimolecular fluorescence–thermally activated delayed fluorescence dual emission. Nature Communications, 2019, 10, 731.	5.8	80
27	Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapid enzyme-responsive drug release. Biomaterials Science, 2018, 6, 1526-1534.	2.6	51
28	Lipopepsomes: A novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. Journal of Controlled Release, 2018, 272, 107-113.	4.8	43
29	Integrated Multifunctional Micelles Coâ€Selfâ€Assembled from Polypeptides Conjugated with Natural Ferulic Acid and Lipoic Acid for Doxorubicin Delivery. ChemPhysChem, 2018, 19, 2070-2077.	1.0	14
30	Prediction of Intramolecular Charge-Transfer Excitation for Thermally Activated Delayed Fluorescence Molecules from a Descriptor-Tuned Density Functional. Journal of Physical Chemistry C, 2018, 122, 7816-7823.	1.5	36
31	Selective Cell Penetrating Peptideâ€Functionalized Polymersomes Mediate Efficient and Targeted Delivery of Methotrexate Disodium to Human Lung Cancer In Vivo. Advanced Healthcare Materials, 2018, 7, e1701135.	3.9	41
32	Tailor-Making Fluorescent Hyaluronic Acid Microgels via Combining Microfluidics and Photoclick Chemistry for Sustained and Localized Delivery of Herceptin in Tumors. ACS Applied Materials & Interfaces, 2018, 10, 3929-3937.	4.0	28
33	Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. Journal of Controlled Release, 2018, 278, 1-8.	4.8	92
34	Cyclic RGD-Peptide-Functionalized Polylipopeptide Micelles for Enhanced Loading and Targeted Delivery of Monomethyl Auristatin E. Molecular Pharmaceutics, 2018, 15, 4854-4861.	2.3	16
35	Small-Sized and Robust Chimaeric Lipopepsomes: A Simple and Functional Platform with High Protein Loading for Targeted Intracellular Delivery of Protein Toxin in Vivo. Chemistry of Materials, 2018, 30, 6831-6838.	3.2	35
36	A high fluorescence rate is key for stable blue organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 7728-7733.	2.7	43

#	Article	IF	CITATIONS
37	Construction of Small-Sized, Robust, and Reduction-Responsive Polypeptide Micelles for High Loading and Targeted Delivery of Chemotherapeutics. Biomacromolecules, 2018, 19, 3586-3593.	2.6	37
38	Robust, Responsive, and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively Cleavable Surfactant and Covalent Hyaluronic Acid Coating. ACS Applied Materials & Interfaces, 2017, 9, 3985-3994.	4.0	52
39	Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(ε-caprolactone) micelles. Acta Biomaterialia, 2017, 50, 396-406.	4.1	97
40	Micellar nanoformulation of lipophilized bortezomib: high drug loading, improved tolerability and targeted treatment of triple negative breast cancer. Journal of Materials Chemistry B, 2017, 5, 5658-5667.	2.9	18
41	Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. Journal of Controlled Release, 2017, 259, 76-82.	4.8	84
42	Targeted inhibition of human hematological cancers <i>in vivo</i> by doxorubicin encapsulated in smart lipoic acid-crosslinked hyaluronic acid nanoparticles. Drug Delivery, 2017, 24, 1482-1490.	2.5	24
43	cRGD/TAT Dual-Ligand Reversibly Cross-Linked Micelles Loaded with Docetaxel Penetrate Deeply into Tumor Tissue and Show High Antitumor Efficacy in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 35651-35663.	4.0	48
44	Glutathione-Sensitive Hyaluronic Acid-Mercaptopurine Prodrug Linked via Carbonyl Vinyl Sulfide: A Robust and CD44-Targeted Nanomedicine for Leukemia. Biomacromolecules, 2017, 18, 3207-3214.	2.6	50
45	Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and Versatile Nanoplatform for Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 27587-27595.	4.0	34
46	EGFR and CD44 Dual-Targeted Multifunctional Hyaluronic Acid Nanogels Boost Protein Delivery to Ovarian and Breast Cancers In Vitro and In Vivo. ACS Applied Materials & Interfaces, 2017, 9, 24140-24147.	4.0	108
47	α _v β ₃ integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. International Journal of Nanomedicine, 2017, Volume 12, 7913-7921.	3.3	24
48	cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug release and targeted synergistic treatment of B16F10 melanoma. Nanotechnology, 2017, 28, 295103.	1.3	24
49	Amphiphilic Copolymers of Polyfluorene Methacrylates Exhibiting Tunable Emissions for Inkâ€Jet Printing. Macromolecular Rapid Communications, 2016, 37, 1352-1356.	2.0	6
50	cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. Journal of Controlled Release, 2016, 233, 29-38.	4.8	121
51	Glutathione-Sensitive Hyaluronic Acid-SS-Mertansine Prodrug with a High Drug Content: Facile Synthesis and Targeted Breast Tumor Therapy. Biomacromolecules, 2016, 17, 3602-3608.	2.6	35
52	Redox-Sensitive and Intrinsically Fluorescent Photoclick Hyaluronic Acid Nanogels for Traceable and Targeted Delivery of Cytochrome <i>c</i> to Breast Tumor in Mice. ACS Applied Materials & Interfaces, 2016, 8, 21155-21162.	4.0	79
53	Robust, active tumor-targeting and fast bioresponsive anticancer nanotherapeutics based on natural endogenous materials. Acta Biomaterialia, 2016, 45, 223-233.	4.1	43
54	Robust, tumor-homing and redox-sensitive polymersomal doxorubicin: A superior alternative to Doxil and Caelyx?. Journal of Controlled Release, 2016, 239, 149-158.	4.8	92

#	Article	IF	CITATIONS
55	Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. Journal of Controlled Release, 2016, 244, 229-239.	4.8	54
56	Efficient and Targeted Suppression of Human Lung Tumor Xenografts in Mice with Methotrexate Sodium Encapsulated in Allâ€Functionâ€inâ€One Chimeric Polymersomes. Advanced Materials, 2016, 28, 8234-8239.	11.1	56
57	Multifunctional Click Hyaluronic Acid Nanogels for Targeted Protein Delivery and Effective Cancer Treatment <i>in Vivo</i> . Chemistry of Materials, 2016, 28, 8792-8799.	3.2	88
58	Vitamin E-Oligo(methyl diglycol <scp>l</scp> -glutamate) as a Biocompatible and Functional Surfactant for Facile Preparation of Active Tumor-Targeting PLGA Nanoparticles. Biomacromolecules, 2016, 17, 2367-2374.	2.6	34
59	Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: A robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer chemotherapy. Journal of Controlled Release, 2016, 244, 326-335.	4.8	86
60	Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts inAvivo. Biomaterials, 2016, 84, 250-261.	5.7	257
61	Facile Synthesis of Reductively Degradable Biopolymers Using Cystamine Diisocyanate as a Coupling Agent. Biomacromolecules, 2016, 17, 882-890.	2.6	25
62	Novel reversibly crosslinked chimaeric polypeptide polymersomes for active loading and intracellular release of doxorubicin hydrochloride. Journal of Controlled Release, 2015, 213, e56-e57.	4.8	0
63	Photoluminescent nanoparticles in water with tunable emission for coating and ink-jet printing. Journal of Materials Chemistry C, 2015, 3, 3666-3675.	2.7	11
64	Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. Journal of Controlled Release, 2015, 210, 125-133.	4.8	84
65	Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today, 2015, 10, 656-670.	6.2	159
66	Chimaeric polymersomes based on poly(ethylene glycol)- b -poly(l -leucine)- b -poly(l -glutamic acid) for efficient delivery of doxorubicin hydrochloride into drug-resistant cancer cells. Journal of Controlled Release, 2015, 213, e87-e88.	4.8	6
67	Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl) Tj ETQq1 1 0.784314 r regeneration. Acta Biomaterialia, 2015, 15, 55-64.	gBT /Overl 4.1	ock 10 Tf 50 100
68	Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. Journal of Controlled Release, 2015, 205, 144-154.	4.8	250
69	Micelles Based on Acid Degradable Poly(acetal urethane): Preparation, pH-Sensitivity, and Triggered Intracellular Drug Release. Biomacromolecules, 2015, 16, 2228-2236.	2.6	103
	pH-Responsive Chimaeric Pepsomes Based on Asymmetric Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 1	.52 Td (gly	/col)- <i>b</i>
70	Copolymer for Efficient Loading and Active Intracellular Delivery of Doxorubicin Hydrochloride. Biomacromolecules, 2015, 16, 1322-1330.	2.6	61
71	Anisamide-Decorated pH-Sensitive Degradable Chimaeric Polymersomes Mediate Potent and Targeted Protein Delivery to Lung Cancer Cells. Biomacromolecules, 2015, 16, 1726-1735.	2.6	73
72	Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes. Journal of Controlled Release, 2015, 220, 704-714.	4.8	73

#	Article	IF	CITATIONS
73	Poly(ethylene oxide)â€ <i>graft</i> â€methotrexate Macromolecular Drugs Conjugating via Aminopteridine Ring Exhibit Potent Anticancer Activity. Chinese Journal of Chemistry, 2014, 32, 57-65.	2.6	1
74	Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Progress in Polymer Science, 2014, 39, 330-364.	11.8	310
75	PEGâ€Amineâ€Initiated Polymerization of Sarcosine <i>N</i> â€Thiocarboxyanhydrides Toward Novel Doubleâ€Hydrophilic PEGâ€ <i>b</i> â€Polysarcosine Diblock Copolymers. Macromolecular Rapid Communications, 2014, 35, 875-881.	2.0	50
76	Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35, 4969-4985.	5.7	629
77	Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules, 2014, 15, 1955-1969.	2.6	447
78	Facilely prepared composites of polyelectrolytes and graphene as the sensing materials for the detection of very low humidity. Sensors and Actuators B: Chemical, 2014, 194, 51-58.	4.0	55
79	White light emission of multi-chromophore photoluminescent nanoparticles using polyacrylate scaffold copolymers with pendent polyfluorene groups. Polymer Chemistry, 2014, 5, 5109.	1.9	13
80	Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomaterialia, 2014, 10, 2159-2168.	4.1	75
81	Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release. Antioxidants and Redox Signaling, 2014, 21, 755-767.	2.5	64
82	pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine, 2014, 9, 487-499.	1.7	152
83	Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Journal of Controlled Release, 2014, 190, 398-414.	4.8	142
84	<i>In Situ</i> Forming Hydrogels via Catalyst-Free and Bioorthogonal "Tetrazole–Alkene―Photo-Click Chemistry. Biomacromolecules, 2013, 14, 2814-2821.	2.6	79
85	Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opinion on Drug Delivery, 2013, 10, 1109-1122.	2.4	68
86	A Simple and Versatile Synthetic Strategy to Functional Polypeptides via Vinyl Sulfone-Substituted <scp>l</scp> -Cysteine <i>N</i> -Carboxyanhydride. Macromolecules, 2013, 46, 6723-6730.	2.2	56
87	Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials, 2013, 34, 5262-5272.	5.7	182
88	Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013, 34, 3647-3657.	5.7	1,155
89	In Situ Forming Reduction-Sensitive Degradable Nanogels for Facile Loading and Triggered Intracellular Release of Proteins. Biomacromolecules, 2013, 14, 1214-1222.	2.6	108
90	Functional Poly(ε-caprolactone)s via Copolymerization of ε-Caprolactone and Pyridyl Disulfide-Containing Cyclic Carbonate: Controlled Synthesis and Facile Access to Reduction-Sensitive Biodegradable Graft Copolymer Micelles. Macromolecules, 2013, 46, 699-707.	2.2	90

#	Article	IF	CITATIONS
91	Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012, 7, 467-480.	6.2	530
92	A composite of quaternized and crosslinked poly(4-vinylpyridine) with processable polypyrrole for the construction of humidity sensors with improved sensing properties. Synthetic Metals, 2012, 162, 205-211.	2.1	19
93	Intracellular drug release nanosystems. Materials Today, 2012, 15, 436-442.	8.3	216
94	Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma. Journal of Controlled Release, 2012, 164, 338-345.	4.8	157
95	Reduction-Responsive Disassemblable Core-Cross-Linked Micelles Based on Poly(ethylene) Tj ETQq1 1 0.784314 Intracellular Anticancer Drug Release. Biomacromolecules, 2012, 13, 2429-2438.	rgBT /Ovei 2.6	rlock 10 Tf 5 181
96	A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity. Sensors and Actuators B: Chemical, 2012, 165, 7-12.	4.0	78
97	Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release, 2011, 152, 2-12.	4.8	1,187
98	Vascularization of collagen–chitosan scaffolds with circulating progenitor cells as potential site for islet transplantation. Journal of Controlled Release, 2011, 152, e196-e198.	4.8	14
99	Novel injectable biodegradable glycol chitosanâ€based hydrogels crosslinked by Michaelâ€type addition reaction with oligo(acryloyl carbonate)â€ <i>b</i> â€poly(ethylene glycol)â€ <i>b</i> â€oligo(acryloyl) Tj ETQq1 1	0. 28 4314	rg B) T /Overlo
100	A Collagen–Chitosan Hydrogel for Endothelial Differentiation and Angiogenesis. Tissue Engineering - Part A, 2010, 16, 3099-3109.	1.6	139
101	Application of Chitosanâ€Based Biomaterials for Blood Vessel Regeneration. Macromolecular Symposia, 2010, 297, 138-146.	0.4	12
102	A biodegradable triblock copolymer poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-lysine): Synthesis, self-assembly, and RGD peptide modification. Polymer, 2007, 48, 139-149.	1.8	113