Chao Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1291850/publications.pdf

Version: 2024-02-01

102 papers	10,023 citations	43973 48 h-index	99 g-index
106	106	106	12330
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release, 2011, 152, 2-12.	4.8	1,187
2	Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013, 34, 3647-3657.	5.7	1,155
3	Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35, 4969-4985.	5.7	629
4	Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012, 7, 467-480.	6.2	530
5	Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules, 2014, 15, 1955-1969.	2.6	447
6	Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Progress in Polymer Science, 2014, 39, 330-364.	11.8	310
7	Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in Avivo. Biomaterials, 2016, 84, 250-261.	5.7	257
8	Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. Journal of Controlled Release, 2015, 205, 144-154.	4.8	250
9	Intracellular drug release nanosystems. Materials Today, 2012, 15, 436-442.	8.3	216
10	Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials, 2013, 34, 5262-5272.	5.7	182
11	Reduction-Responsive Disassemblable Core-Cross-Linked Micelles Based on Poly(ethylene) Tj ETQq1 1 0.784314 Intracellular Anticancer Drug Release. Biomacromolecules, 2012, 13, 2429-2438.	rgBT /Over	rlock 10 Tf <mark>50</mark> 181
12	Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today, 2015, 10, 656-670.	6.2	159
13	Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma. Journal of Controlled Release, 2012, 164, 338-345.	4.8	157
14	pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine, 2014, 9, 487-499.	1.7	152
15	Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Journal of Controlled Release, 2014, 190, 398-414.	4.8	142
16	A Collagen–Chitosan Hydrogel for Endothelial Differentiation and Angiogenesis. Tissue Engineering - Part A, 2010, 16, 3099-3109.	1.6	139
17	cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. Journal of Controlled Release, 2016, 233, 29-38.	4.8	121
18	A biodegradable triblock copolymer poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-lysine): Synthesis, self-assembly, and RGD peptide modification. Polymer, 2007, 48, 139-149.	1.8	113

#	Article	IF	Citations
19	In Situ Forming Reduction-Sensitive Degradable Nanogels for Facile Loading and Triggered Intracellular Release of Proteins. Biomacromolecules, 2013, 14, 1214-1222.	2.6	108
20	EGFR and CD44 Dual-Targeted Multifunctional Hyaluronic Acid Nanogels Boost Protein Delivery to Ovarian and Breast Cancers In Vitro and In Vivo. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24140-24147.	4.0	108
21	Micelles Based on Acid Degradable Poly(acetal urethane): Preparation, pH-Sensitivity, and Triggered Intracellular Drug Release. Biomacromolecules, 2015, 16, 2228-2236.	2.6	103
22	Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl) Tj ETQq0 0 0 rgBT /Overegeneration. Acta Biomaterialia, 2015, 15, 55-64.	rlock 10 T 4.1	f 50 627 Td 100
23	Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(Îμ-caprolactone) micelles. Acta Biomaterialia, 2017, 50, 396-406.	4.1	97
24	Robust, tumor-homing and redox-sensitive polymersomal doxorubicin: A superior alternative to Doxil and Caelyx?. Journal of Controlled Release, 2016, 239, 149-158.	4.8	92
25	Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. Journal of Controlled Release, 2018, 278, 1-8.	4.8	92
26	Functional Poly(Î μ -caprolactone)s via Copolymerization of Î μ -Caprolactone and Pyridyl Disulfide-Containing Cyclic Carbonate: Controlled Synthesis and Facile Access to Reduction-Sensitive Biodegradable Graft Copolymer Micelles. Macromolecules, 2013, 46, 699-707.	2.2	90
27	Multifunctional Click Hyaluronic Acid Nanogels for Targeted Protein Delivery and Effective Cancer Treatment <i>in Vivo</i> . Chemistry of Materials, 2016, 28, 8792-8799.	3.2	88
28	Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: A robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer chemotherapy. Journal of Controlled Release, 2016, 244, 326-335.	4.8	86
29	Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. Journal of Controlled Release, 2015, 210, 125-133.	4.8	84
30	Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. Journal of Controlled Release, 2017, 259, 76-82.	4.8	84
31	A three-dimensional ratiometric sensing strategy on unimolecular fluorescence–thermally activated delayed fluorescence dual emission. Nature Communications, 2019, 10, 731.	5.8	80
32	<i>In Situ</i> Forming Hydrogels via Catalyst-Free and Bioorthogonal "Tetrazole–Alkene―Photo-Click Chemistry. Biomacromolecules, 2013, 14, 2814-2821.	2.6	79
33	Redox-Sensitive and Intrinsically Fluorescent Photoclick Hyaluronic Acid Nanogels for Traceable and Targeted Delivery of Cytochrome $\langle i \rangle c \langle i \rangle$ to Breast Tumor in Mice. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21155-21162.	4.0	79
34	A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity. Sensors and Actuators B: Chemical, 2012, 165, 7-12.	4.0	78
35	Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomaterialia, 2014, 10, 2159-2168.	4.1	7 5
36	cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. Journal of Controlled Release, 2019, 301, 110-118.	4.8	75

#	Article	IF	CITATIONS
37	Anisamide-Decorated pH-Sensitive Degradable Chimaeric Polymersomes Mediate Potent and Targeted Protein Delivery to Lung Cancer Cells. Biomacromolecules, 2015, 16, 1726-1735.	2.6	73
38	Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes. Journal of Controlled Release, 2015, 220, 704-714.	4.8	73
39	Novel injectable biodegradable glycol chitosanâ€based hydrogels crosslinked by Michaelâ€type addition reaction with oligo(acryloyl carbonate)â€ <i>b</i> â€epoly(ethylene glycol)â€ <i>b</i> â€oligo(acryloyl) Tj ETQq1 1	0. 2 84314	rgBT Over <mark>lo</mark>
40	Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opinion on Drug Delivery, 2013, 10, 1109-1122.	2.4	68
41	Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release. Antioxidants and Redox Signaling, 2014, 21, 755-767.	2.5	64
42	pH-Responsive Chimaeric Pepsomes Based on Asymmetric Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 5 Copolymer for Efficient Loading and Active Intracellular Delivery of Doxorubicin Hydrochloride. Biomacromolecules, 2015, 16, 1322-1330.	552 Td (gly 2.6	col)- <i>b</i> 61
43	A Simple and Versatile Synthetic Strategy to Functional Polypeptides via Vinyl Sulfone-Substituted <scp> </scp> -Cysteine <i>N</i> -Carboxyanhydride. Macromolecules, 2013, 46, 6723-6730.	2.2	56
44	Efficient and Targeted Suppression of Human Lung Tumor Xenografts in Mice with Methotrexate Sodium Encapsulated in Allâ€Functionâ€inâ€One Chimeric Polymersomes. Advanced Materials, 2016, 28, 8234-8239.	11.1	56
45	Facilely prepared composites of polyelectrolytes and graphene as the sensing materials for the detection of very low humidity. Sensors and Actuators B: Chemical, 2014, 194, 51-58.	4.0	55
46	Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. Journal of Controlled Release, 2016, 244, 229-239.	4.8	54
47	Robust, Responsive, and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively Cleavable Surfactant and Covalent Hyaluronic Acid Coating. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3985-3994.	4.0	52
48	Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Advanced Drug Delivery Reviews, 2020, 160, 199-211.	6.6	52
49	Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapid enzyme-responsive drug release. Biomaterials Science, 2018, 6, 1526-1534.	2.6	51
50	PEGâ€Amineâ€Initiated Polymerization of Sarcosine <i>N</i> â€Thiocarboxyanhydrides Toward Novel Doubleâ€Hydrophilic PEGâ€ <i>b</i> â€Polysarcosine Diblock Copolymers. Macromolecular Rapid Communications, 2014, 35, 875-881.	2.0	50
51	Glutathione-Sensitive Hyaluronic Acid-Mercaptopurine Prodrug Linked via Carbonyl Vinyl Sulfide: A Robust and CD44-Targeted Nanomedicine for Leukemia. Biomacromolecules, 2017, 18, 3207-3214.	2.6	50
52	Small, Traceable, Endosome-Disrupting, and Bioresponsive Click Nanogels Fabricated via Microfluidics for CD44-Targeted Cytoplasmic Delivery of Therapeutic Proteins. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22171-22180.	4.0	49
53	cRGD/TAT Dual-Ligand Reversibly Cross-Linked Micelles Loaded with Docetaxel Penetrate Deeply into Tumor Tissue and Show High Antitumor Efficacy in Vivo. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35651-35663.	4.0	48
54	Difluoroboron-Enabled Thermally Activated Delayed Fluorescence. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32209-32217.	4.0	46

#	Article	IF	Citations
55	Exciton―and Polaronâ€Induced Reversible Dipole Reorientation in Amorphous Organic Semiconductor Films. Advanced Optical Materials, 2019, 7, 1801644.	3.6	44
56	Robust, active tumor-targeting and fast bioresponsive anticancer nanotherapeutics based on natural endogenous materials. Acta Biomaterialia, 2016, 45, 223-233.	4.1	43
57	Lipopepsomes: A novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. Journal of Controlled Release, 2018, 272, 107-113.	4.8	43
58	A high fluorescence rate is key for stable blue organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 7728-7733.	2.7	43
59	Selective Cell Penetrating Peptideâ€Functionalized Polymersomes Mediate Efficient and Targeted Delivery of Methotrexate Disodium to Human Lung Cancer In Vivo. Advanced Healthcare Materials, 2018, 7, e1701135.	3.9	41
60	Construction of Small-Sized, Robust, and Reduction-Responsive Polypeptide Micelles for High Loading and Targeted Delivery of Chemotherapeutics. Biomacromolecules, 2018, 19, 3586-3593.	2.6	37
61	Prediction of Intramolecular Charge-Transfer Excitation for Thermally Activated Delayed Fluorescence Molecules from a Descriptor-Tuned Density Functional. Journal of Physical Chemistry C, 2018, 122, 7816-7823.	1.5	36
62	Saporin-loaded CD44 and EGFR dual-targeted nanogels for potent inhibition of metastatic breast cancer in vivo. International Journal of Pharmaceutics, 2019, 560, 57-64.	2.6	36
63	Selective Cell Penetrating Peptideâ€Functionalized Envelopeâ€Type Chimeric Lipopepsomes Boost Systemic RNAi Therapy for Lung Tumors. Advanced Healthcare Materials, 2019, 8, e1900500.	3.9	36
64	Glutathione-Sensitive Hyaluronic Acid-SS-Mertansine Prodrug with a High Drug Content: Facile Synthesis and Targeted Breast Tumor Therapy. Biomacromolecules, 2016, 17, 3602-3608.	2.6	35
65	Small-Sized and Robust Chimaeric Lipopepsomes: A Simple and Functional Platform with High Protein Loading for Targeted Intracellular Delivery of Protein Toxin in Vivo. Chemistry of Materials, 2018, 30, 6831-6838.	3.2	35
66	Vitamin E-Oligo (methyl diglycol <scp>l</scp> -glutamate) as a Biocompatible and Functional Surfactant for Facile Preparation of Active Tumor-Targeting PLGA Nanoparticles. Biomacromolecules, 2016, 17, 2367-2374.	2.6	34
67	Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and Versatile Nanoplatform for Anticancer Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27587-27595.	4.0	34
68	Oncoprotein Inhibitor Rigosertib Loaded in ApoE-Targeted Smart Polymersomes Reveals High Safety and Potency against Human Glioblastoma in Mice. Molecular Pharmaceutics, 2019, 16, 3711-3719.	2.3	32
69	Brain delivery of Plk1 inhibitor via chimaeric polypeptide polymersomes for safe and superb treatment of orthotopic glioblastoma. Journal of Controlled Release, 2021, 329, 1139-1149.	4.8	29
70	Tailor-Making Fluorescent Hyaluronic Acid Microgels via Combining Microfluidics and Photoclick Chemistry for Sustained and Localized Delivery of Herceptin in Tumors. ACS Applied Materials & Localized Interfaces, 2018, 10, 3929-3937.	4.0	28
71	Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules, 2019, 20, 4299-4311.	2.6	27
72	High Fluorescence Rate of Thermally Activated Delayed Fluorescence Emitters for Efficient and Stable Blue OLEDs. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31706-31715.	4.0	27

#	Article	IF	CITATIONS
73	Facile Synthesis of Reductively Degradable Biopolymers Using Cystamine Diisocyanate as a Coupling Agent. Biomacromolecules, 2016, 17, 882-890.	2.6	25
74	Reductively cleavable polymer-drug conjugates based on dendritic polyglycerol sulfate and monomethyl auristatin E as anticancer drugs. Journal of Controlled Release, 2019, 300, 13-21.	4.8	25
75	Targeted inhibition of human hematological cancers <i>in vivo</i> by doxorubicin encapsulated in smart lipoic acid-crosslinked hyaluronic acid nanoparticles. Drug Delivery, 2017, 24, 1482-1490.	2.5	24
76	α _v β ₃ integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. International Journal of Nanomedicine, 2017, Volume 12, 7913-7921.	3.3	24
77	cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug release and targeted synergistic treatment of B16F10 melanoma. Nanotechnology, 2017, 28, 295103.	1.3	24
78	CD44-Targeted Multifunctional Nanomedicines Based on a Single-Component Hyaluronic Acid Conjugate with All-Natural Precursors: Construction and Treatment of Metastatic Breast Tumors <i>in Vivo</i> . Biomacromolecules, 2020, 21, 104-113.	2.6	23
79	Efficient and Stable Organic Light-Emitting Diodes Employing Indolo[2,3- <i>b</i>) indole-Based Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Emp; Interfaces, 2020, 12, 6127-6136.	4.0	23
80	Improving the Stability of Green Thermally Activated Delayed Fluorescence OLEDs by Reducing the Excited-State Dipole Moment. Journal of Physical Chemistry C, 2019, 123, 29875-29883.	1.5	22
81	A composite of quaternized and crosslinked poly(4-vinylpyridine) with processable polypyrrole for the construction of humidity sensors with improved sensing properties. Synthetic Metals, 2012, 162, 205-211.	2.1	19
82	Micellar nanoformulation of lipophilized bortezomib: high drug loading, improved tolerability and targeted treatment of triple negative breast cancer. Journal of Materials Chemistry B, 2017, 5, 5658-5667.	2.9	18
83	Doxorubicin Delivered via ApoE-Directed Reduction-Sensitive Polymersomes Potently Inhibit Orthotopic Human Glioblastoma Xenografts in Nude Mice. International Journal of Nanomedicine, 2021, Volume 16, 4105-4115.	3.3	18
84	Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet–Triplet Splitting With Large Fluorescence Rate. Frontiers in Chemistry, 2019, 7, 312.	1.8	17
85	Cyclic RGD-Peptide-Functionalized Polylipopeptide Micelles for Enhanced Loading and Targeted Delivery of Monomethyl Auristatin E. Molecular Pharmaceutics, 2018, 15, 4854-4861.	2.3	16
86	Nanoagents Based on Poly(ethylene glycol)â€ <i>b</i> â€Poly(<scp>l</scp> â€thyroxine) Block Copolypeptide for Enhanced Dualâ€Modality Imaging and Targeted Tumor Radiotherapy. Small, 2019, 15, e1902577.	5.2	15
87	Vascularization of collagen–chitosan scaffolds with circulating progenitor cells as potential site for islet transplantation. Journal of Controlled Release, 2011, 152, e196-e198.	4.8	14
88	Integrated Multifunctional Micelles Coâ€Selfâ€Assembled from Polypeptides Conjugated with Natural Ferulic Acid and Lipoic Acid for Doxorubicin Delivery. ChemPhysChem, 2018, 19, 2070-2077.	1.0	14
89	Expanding the hole delocalization range in excited molecules for stable organic light-emitting diodes employing thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2020, 8, 10021-10030.	2.7	14
90	White light emission of multi-chromophore photoluminescent nanoparticles using polyacrylate scaffold copolymers with pendent polyfluorene groups. Polymer Chemistry, 2014, 5, 5109.	1.9	13

#	Article	IF	CITATIONS
91	Enzyme-responsive micellar JQ1 induces enhanced BET protein inhibition and immunotherapy of malignant tumors. Biomaterials Science, 2021, 9, 6915-6926.	2.6	13
92	Application of Chitosanâ€Based Biomaterials for Blood Vessel Regeneration. Macromolecular Symposia, 2010, 297, 138-146.	0.4	12
93	Photoluminescent nanoparticles in water with tunable emission for coating and ink-jet printing. Journal of Materials Chemistry C, 2015, 3, 3666-3675.	2.7	11
94	Weakly Conjugated Phosphine Oxide Hosts for Efficient Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30591-30599.	4.0	11
95	Phenylboronic Acid-Functionalized Copolypeptides: Facile Synthesis and Responsive Dual Anticancer Drug Release. Biomacromolecules, 2022, 23, 2989-2998.	2.6	10
96	Chimaeric polymersomes based on poly(ethylene glycol)- b -poly(l -leucine)- b -poly(l -glutamic acid) for efficient delivery of doxorubicin hydrochloride into drug-resistant cancer cells. Journal of Controlled Release, 2015, 213, e87-e88.	4.8	6
97	Amphiphilic Copolymers of Polyfluorene Methacrylates Exhibiting Tunable Emissions for Inkâ€Jet Printing. Macromolecular Rapid Communications, 2016, 37, 1352-1356.	2.0	6
98	Targeted and Reduction-Sensitive Cross-Linked PLGA Nanotherapeutics for Safer and Enhanced Chemotherapy of Malignant Melanoma. ACS Biomaterials Science and Engineering, 2020, 6, 2621-2629.	2.6	6
99	Functionalization of soft materials for cardiac repair and regeneration. Critical Reviews in Biotechnology, 2019, 39, 451-468.	5.1	3
100	Poly(ethylene oxide)â€ <i>graft</i> å€methotrexate Macromolecular Drugs Conjugating via Aminopteridine Ring Exhibit Potent Anticancer Activity. Chinese Journal of Chemistry, 2014, 32, 57-65.	2.6	1
101	Novel reversibly crosslinked chimaeric polypeptide polymersomes for active loading and intracellular release of doxorubicin hydrochloride. Journal of Controlled Release, 2015, 213, e56-e57.	4.8	O
102	Coatingâ€Sheddable CD44â€Targeted Poly(d , l â€lactide―co â€glycolide) Nanomedicines Fabricated by Using Photoclickâ€Crosslinkable Surfactant. Advanced Therapeutics, 2020, 3, 1900160.	1.6	0