Francesco Giacalone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1291154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reverse electrodialysis heat engine (REDHE). , 2022, , 127-162.		1
2	Salt extraction regeneration technologies. , 2022, , 197-227.		0
3	White light emitting silsesquioxane based materials: the importance of a ligand with rigid and directional arms. Materials Advances, 2022, 3, 570-578.	2.6	3
4	Carbon nanotube supported aluminum porphyrin-imidazolium bromide crosslinked copolymer: A synergistic bifunctional catalyst for CO2 conversion. Journal of CO2 Utilization, 2022, 57, 101884.	3.3	11
5	First Evidence of Tris(catecholato)silicate Formation from Hydrolysis of an Alkyl Bis(catecholato)silicate. Molecules, 2022, 27, 2521.	1.7	1
6	Regeneration units for thermolytic salts applications in water & power production: State of the art, experimental and modelling assessment. Desalination, 2021, 504, 114965.	4.0	4
7	A Study on the Stability of Carbon Nanoforms–Polyimidazolium Network Hybrids in the Conversion of CO2 into Cyclic Carbonates: Increase in Catalytic Activity after Reuse. Nanomaterials, 2021, 11, 2243.	1.9	5
8	The first operating thermolytic reverse electrodialysis heat engine. Journal of Membrane Science, 2020, 595, 117522.	4.1	32
9	Tuneable Emission of Polyhedral Oligomeric Silsesquioxane Based Nanostructures that Selfâ€Assemble in the Presence of Europium(III) Ions: Reversible trans â€ŧo―cis Isomerization. ChemPlusChem, 2020, 85, 391-398.	1.3	5
10	Straightforward preparation of highly loaded MWCNT–polyamine hybrids and their application in catalysis. Nanoscale Advances, 2020, 2, 4199-4211.	2.2	8
11	Bending Sensors Based on Thin Films of Semitransparent Bithiopheneâ€Fulleropyrrolidine Bisadducts. ChemPlusChem, 2020, 85, 2455-2464.	1.3	3
12	POSS nanostructures in catalysis. Catalysis Science and Technology, 2020, 10, 7415-7447.	2.1	43
13	Reconsidering TOF calculation in the transformation of epoxides and CO2 into cyclic carbonates. Journal of CO2 Utilization, 2020, 38, 132-140.	3.3	20
14	Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions. Applied Energy, 2019, 253, 113489.	5.1	35
15	Front Cover Picture: SBAâ€15/POSSâ€Imidazolium Hybrid as Catalytic Nanoreactor: the role of the Support in the Stabilization of Palladium Species for Câ^C Cross Coupling Reactions. (Adv. Synth. Catal. 16/2019). Advanced Synthesis and Catalysis, 2019, 361, 3661-3661.	2.1	0
16	Efficient Conversion of Carbon Dioxide by Imidazoliumâ€Based Crossâ€Linked Nanostructures Containing Polyhedral Oligomeric Silsesquioxane (POSS) Building Blocks. ChemPlusChem, 2019, 84, 1536-1543.	1.3	15
17	Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System. Energies, 2019, 12, 3206. 	1.6	26
18	Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment. Energy, 2019, 181, 532-547.	4.5	41

#	Article	IF	CITATIONS
19	Reverse electrodialysis heat engine with multi-effect distillation: Exergy analysis and perspectives. Energy Conversion and Management, 2019, 194, 140-159.	4.4	48
20	Templating effect of carbon nanoforms on highly crossâ€linked imidazolium network: Catalytic activity of the resulting hybrids with Pd nanoparticles. Applied Organometallic Chemistry, 2019, 33, e4848.	1.7	16
21	Modified Nanocarbons for Catalysis. ChemCatChem, 2019, 11, 90-133.	1.8	66
22	SBAâ€15/POSSâ€Imidazolium Hybrid as Catalytic Nanoreactor: the role of the Support in the Stabilization of Palladium Species for Câ^'C Cross Coupling Reactions Advanced Synthesis and Catalysis, 2019, 361, 3758-3767.	2.1	14
23	Thermolytic reverse electrodialysis heat engine: model development, integration and performance analysis. Energy Conversion and Management, 2019, 189, 1-13.	4.4	43
24	Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates. Catalysts, 2019, 9, 325.	1.6	75
25	Towards the first proof of the concept of a Reverse ElectroDialysis - Membrane Distillation Heat Engine. Desalination, 2019, 453, 77-88.	4.0	46
26	Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis. Energy, 2019, 166, 674-689.	4.5	42
27	Supported Polyhedral Oligomeric Silsesquioxaneâ€Based (POSS) Materials as Highly Active Organocatalysts for the Conversion of CO ₂ . ChemCatChem, 2019, 11, 560-567.	1.8	49
28	Crossâ€Linked Polyamine from Imidazoliumâ€Based Materials: A Simple Route to Useful Catalytic Materials. European Journal of Organic Chemistry, 2018, 2018, 1352-1358.	1.2	7
29	A methodology for assessing the impact of salinity gradient power generation in urban contexts. Sustainable Cities and Society, 2018, 38, 158-173.	5.1	7
30	Exergy analysis of reverse electrodialysis. Energy Conversion and Management, 2018, 164, 588-602.	4.4	70
31	Enhanced power-conversion efficiency in organic solar cells incorporating copolymeric phase-separation modulators. Journal of Materials Chemistry A, 2018, 6, 3884-3894.	5.2	22
32	Performance Analysis of a RED-MED Salinity Gradient Heat Engine. Energies, 2018, 11, 3385.	1.6	27
33	Reverse Electrodialysis: Applications to Different Case Studies. , 2018, , .		2
34	Thermodynamic, Exergy, and Thermoeconomic analysis of Multiple Effect Distillation Processes. , 2018, , 445-489.		5
35	Supported Ionic Liquids: A Versatile and Useful Class of Materials. Chemical Record, 2017, 17, 918-938.	2.9	57
36	Imidazoliumâ€Functionalized Carbon Nanohorns for the Conversion of Carbon Dioxide: Unprecedented Increase of Catalytic Activity after Recycling. ChemSusChem, 2017, 10, 1202-1209.	3.6	55

#	Article	IF	CITATIONS
37	Advances in Organic and Organic-Inorganic Hybrid Polymeric Supports for Catalytic Applications. Molecules, 2016, 21, 1288.	1.7	32
38	Proximity Effect using a Nanocage Structure: Polyhedral Oligomeric Silsesquioxaneâ€Imidazolium Tetrachloro―palladate Salt as a Precatalyst for the Suzuki–Miyaura Reaction in Water. ChemCatChem, 2016, 8, 1685-1691.	1.8	30
39	Covalently Supported Ionic Liquid Phases: An Advanced Class of Recyclable Catalytic Systems. ChemCatChem, 2016, 8, 664-684.	1.8	114
40	Sensor Properties of Pristine and Functionalized Carbon Nanohorns. Electroanalysis, 2016, 28, 2489-2499.	1.5	23
41	DNAâ€Binding and Anticancer Activity of Pyreneâ€Imidazolium Derivatives. ChemistrySelect, 2016, 1, 6755-6761.	0.7	10
42	Characterization of pressure retarded osmosis lab-scale systems. Desalination and Water Treatment, 2016, 57, 22994-23006.	1.0	12
43	Supported C ₆₀ -IL-PdNPs as extremely active nanocatalysts for C–C cross-coupling reactions. Journal of Materials Chemistry A, 2016, 4, 17193-17206.	5.2	28
44	Highly Loaded Multiâ€Walled Carbon Nanotubes Nonâ€Covalently Modified with a Bisâ€Imidazolium Salt and their Use as Catalyst Supports. ChemPlusChem, 2016, 81, 471-476.	1.3	15
45	Single-Walled Carbon Nanotube–Polyamidoamine Dendrimer Hybrids for Heterogeneous Catalysis. ACS Nano, 2016, 10, 4627-4636.	7.3	107
46	Cross‣inked Thiazolidine Network as Support for Palladium: A New Catalyst for Suzuki and Heck Reactions. ChemCatChem, 2015, 7, 2526-2533.	1.8	32
47	A Simple Procedure for the Oxidation of Alcohols Using [Bis(acetoxy)iodo]benzene and a Catalytic Amount of Bromide Ions in Ethyl Acetate. Synlett, 2015, 26, 1179-1184.	1.0	16
48	Fullerene–Ionic‣iquid Conjugates: A New Class of Hybrid Materials with Unprecedented Properties. Chemistry - A European Journal, 2015, 21, 3327-3334.	1.7	40
49	Chemical modification of carbon nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with diphenyl dichalcogenides. Nanoscale, 2015, 7, 6007-6013.	2.8	18
50	Thiazoliumâ€Based Catalysts for the Etherification of Benzylic Alcohols under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2015, 357, 800-810.	2.1	15
51	A polyhedral oligomeric silsesquioxane-based catalyst for the efficient synthesis of cyclic carbonates. Catalysis Science and Technology, 2015, 5, 5000-5007.	2.1	50
52	Catalytic Synergism in a C ₆₀ IL ₁₀ TEMPO ₂ Hybrid in the Efficient Oxidation of Alcohols. Advanced Synthesis and Catalysis, 2015, 357, 51-58.	2.1	33
53	Efficient microwave-mediated synthesis of fullerene acceptors for organic photovoltaics. RSC Advances, 2014, 4, 63200-63207.	1.7	19
54	Non-conventional methods and media for the activation and manipulation of carbon nanoforms. Chemical Society Reviews, 2014, 43, 58-69.	18.7	76

FRANCESCO GIACALONE

#	Article	IF	CITATIONS
55	Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs). Biosensors and Bioelectronics, 2014, 59, 94-98.	5.3	60
56	Cross‣inked Imidazolium Salts as Scavengers for Palladium. ChemPlusChem, 2014, 79, 421-426.	1.3	11
57	Recyclable Heterogeneous and Lowâ€Loading Homogeneous Chiral Imidazolidinone Catalysts for αâ€Alkylation of Aldehydes. ChemPlusChem, 2014, 79, 857-862.	1.3	12
58	An E-Factor Minimized Protocol for a Sustainable and Efficient Heck Reaction in Flow. ACS Sustainable Chemistry and Engineering, 2014, 2, 2813-2819.	3.2	53
59	Evidences of release and catch mechanism in the Heck reaction catalyzed by palladium immobilized on highly cross-linked-supported imidazolium salts. Journal of Molecular Catalysis A, 2014, 387, 57-62.	4.8	38
60	Fullerene as a Platform for Recyclable TEMPO Organocatalysts for the Oxidation of Alcohols. ChemCatChem, 2014, 6, 2419-2424.	1.8	28
61	"Release and catch―catalytic systems. Green Chemistry, 2013, 15, 2608.	4.6	90
62	An Atomâ€Economical Approach to Functionalized Singleâ€Walled Carbon Nanotubes: Reaction with Disulfides. Angewandte Chemie - International Edition, 2013, 52, 6480-6483.	7.2	33
63	Recyclable Catalyst Reservoir: Oxidation of Alcohols Mediated by Noncovalently Supported Bis(imidazolium)â€Tagged 2,2,6,6â€Tetramethylpiperidine 1â€Oxyl. ChemCatChem, 2013, 5, 2991-2999.	1.8	29
64	Palladium Supported on Crossâ€Linked Imidazolium Network on Silica as Highly Sustainable Catalysts for the Suzuki Reaction under Flow Conditions. Advanced Synthesis and Catalysis, 2013, 355, 2007-2018.	2.1	91
65	Buckyballs. Topics in Current Chemistry, 2013, 350, 1-64.	4.0	12
66	An Atomâ€Economical Approach to Functionalized Singleâ€Walled Carbon Nanotubes: Reaction with Disulfides. Angewandte Chemie, 2013, 125, 6608-6611.	1.6	5
67	A Straightforward Electroactive Ï€â€Extended Tetrathiafulvalene (exTTF) Building Block. European Journal of Organic Chemistry, 2012, 2012, 3581-3586.	1.2	3
68	A Liquid–Liquid Biphasic Homogeneous Organocatalytic Aldol Protocol Based on the Use of a Silica Gel Bound Multilayered Ionic Liquid Phase. ChemCatChem, 2012, 4, 1000-1006.	1.8	42
69	Low-loading asymmetric organocatalysis. Chemical Society Reviews, 2012, 41, 2406-2447.	18.7	322
70	Polystyrene-supported organocatalysts for α-selenenylation and Michael reactions. Catalysis Communications, 2011, 16, 75-80.	1.6	29
71	Multi‣ayered, Covalently Supported Ionic Liquid Phase (mlcâ€6ILP) as Highly Cross‣inked Support for Recyclable Palladium Catalysts for the Suzuki Reaction in Aqueous Medium. Advanced Synthesis and Catalysis, 2011, 353, 2119-2130.	2.1	78
72	Multilayered Supported Ionic Liquids as Catalysts for Chemical Fixation of Carbon Dioxide: A Highâ€Throughput Study in Supercritical Conditions. ChemSusChem, 2011, 4, 1830-1837.	3.6	77

FRANCESCO GIACALONE

#	Article	IF	CITATIONS
73	Advances towards Highly Active and Stereoselective Simple and Cheap Prolineâ€Based Organocatalysts. European Journal of Organic Chemistry, 2010, 2010, 5696-5704.	1.2	63
74	New Concepts and Applications in the Macromolecular Chemistry of Fullerenes. Advanced Materials, 2010, 22, 4220-4248.	11.1	119
75	Water in Stereoselective Organocatalytic Reactions. Advanced Synthesis and Catalysis, 2009, 351, 33-57.	2.1	302
76	Enhanced Activity and Stereoselectivity of Polystyreneâ€Supported Prolineâ€Based Organic Catalysts for Direct Asymmetric Aldol Reaction in Water. European Journal of Organic Chemistry, 2009, 2009, 5437-5444.	1.2	66
77	Stereoselective aldol reaction catalyzed by a highly recyclable polystyrene supported substituted prolinamide catalyst. Arkivoc, 2009, 2009, 5-15.	0.3	4
78	First Evidence of Proline Acting as a Bifunctional Catalyst in the Baylis–Hillman Reaction Between Alkyl Vinyl Ketones and Aryl Aldehydes. European Journal of Organic Chemistry, 2008, 2008, 1589-1596.	1.2	22
79	Novel Prolinamide‣upported Polystyrene as Highly Stereoselective and Recyclable Organocatalyst for the Aldol Reaction. Advanced Synthesis and Catalysis, 2008, 350, 1397-1405.	2.1	99
80	New Simple Hydrophobic Proline Derivatives as Highly Active and Stereoselective Catalysts for the Direct Asymmetric Aldol Reaction in Aqueous Medium. Advanced Synthesis and Catalysis, 2008, 350, 2747-2760.	2.1	108
81	Polystyrene-supported proline as recyclable catalyst in the Baylis–Hillman reaction of arylaldehydes and methyl or ethyl vinyl ketone. Catalysis Communications, 2008, 9, 1477-1481.	1.6	26
82	Supported proline and proline-derivatives as recyclable organocatalysts. Chemical Society Reviews, 2008, 37, 1666.	18.7	409
83	Tetrathiafulvalene-based molecular nanowires. Chemical Communications, 2007, , 4854.	2.2	33
84	New ionic liquid-modified silica gels as recyclable materials for l-proline- or H–Pro–Pro–Asp–NH2-catalyzed aldol reaction. Green Chemistry, 2007, 9, 1328.	4.6	77
85	Hydrophobically Directed Aldol Reactions: Polystyrene‣upported <scp>L</scp> â€Proline as a Recyclable Catalyst for Direct Asymmetric Aldol Reactions in the Presence of Water. European Journal of Organic Chemistry, 2007, 2007, 4688-4698.	1.2	150
86	Polystyrene-supported proline and prolinamide. Versatile heterogeneous organocatalysts both for asymmetric aldol reaction in water and α-selenenylation of aldehydes. Tetrahedron Letters, 2007, 48, 255-259.	0.7	146
87	Chapter 6. Hydrogen Bonding Donor–Acceptor Carbon Nanostructures. RSC Nanoscience and Nanotechnology, 2007, , 152-190.	0.2	4
88	Fullerene Polymers:Â Synthesis and Properties. Chemical Reviews, 2006, 106, 5136-5190.	23.0	402
89	Long-Lived Photoinduced Charges in Donorâ [~] 'Acceptor Anthraquinone-Substituted Thiophene Copolymers. Journal of Physical Chemistry B, 2006, 110, 5351-5358.	1.2	27
90	Cyclodextrin-[60]fullerene conjugates: synthesis, characterization, and electrochemical behavior. Tetrahedron Letters, 2006, 47, 8105-8108.	0.7	17

FRANCESCO GIACALONE

#	Article	IF	CITATIONS
91	Lipase-catalyzed resolution of anti-6-substituted 1,3-dioxepan-5-ols. Tetrahedron: Asymmetry, 2006, 17, 3128-3134.	1.8	2
92	Design, synthesis and photovoltaic properties of [60]fullerene based molecular materials. Materials Science and Engineering C, 2005, 25, 835-842.	3.8	24
93	Diphenylmethanofullerenes: New and Efficient Acceptors in Bulk-Heterojunction Solar Cells. Advanced Functional Materials, 2005, 15, 1979-1987.	7.8	151
94	Electronic Communication through π-Conjugated Wires in Covalently Linked Porphyrin/C60Ensembles. Chemistry - A European Journal, 2005, 11, 1267-1280.	1.7	115
95	Solid Film versus Solution-Phase Charge-Recombination Dynamics of exTTF–Bridge–C60 Dyads. Chemistry - A European Journal, 2005, 11, 7440-7447.	1.7	30
96	Probing Molecular Wires: Synthesis, Structural, and Electronic Study of Donor-Acceptor Assemblies Exhibiting Long-Range Electron Transfer. Chemistry - A European Journal, 2005, 11, 4819-4834.	1.7	101
97	Topological Effects of a Rigid Chiral Spacer on the Electronic Interactions in Donor–Acceptor Ensembles. Chemistry - A European Journal, 2005, 11, 7199-7210.	1.7	32
98	Concentration dependence of amplified spontaneous emission in two oligo-(p-phenylenevinylene) derivatives. Journal of Applied Physics, 2005, 97, 063522.	1.1	20
99	Polymer solar cells with novel fullerene-based acceptor. Thin Solid Films, 2004, 451-452, 43-47.	0.8	46
100	Donor–acceptor polythiophene copolymers with tunable acceptor content for photoelectric conversion devices. Journal of Materials Chemistry, 2004, 14, 67-74.	6.7	34
101	Mimicking photosynthesis: covalent [60]fullerene-based donor–acceptor ensembles. Synthetic Metals, 2004, 147, 57-61.	2.1	18
102	Exceptionally Small Attenuation Factors in Molecular Wires. Journal of the American Chemical Society, 2004, 126, 5340-5341.	6.6	186
103	Tuning of the photoinduced charge transfer process in donor-acceptor double-cable copolymers. , 2004, 5215, 41.		0
104	Synthesis and Photoluminescent Properties of 1,1′-Binaphthyl-Based Chiral Phenylenevinylene Dendrimers ChemInform, 2003, 34, no.	0.1	0
105	Synthesis of Soluble Donorâ^'Acceptor Double-Cable Polymers Based on Polythiophene and Tetracyanoanthraquinodimethane (TCAQ). Organic Letters, 2003, 5, 1669-1672.	2.4	33
106	Synthesis and Photoluminescent Properties of 1,1â€~-Binaphthyl-Based Chiral Phenylenevinylene Dendrimers. Journal of Organic Chemistry, 2003, 68, 3178-3183.	1.7	23
107	Tuning of the photoinduced charge transfer process in donor–acceptor double-cable copolymers. Synthetic Metals, 2003, 139, 731-733.	2.1	12
108	Synthesis of 1,1â€~-Binaphthyl-Based Enantiopure C60Dimers. Journal of Organic Chemistry, 2002, 67, 3529-3532.	1.7	25

#	Article	IF	CITATIONS
109	Electroactive C60-Polymer Systems. , 0, , 147-170.		0
110	New hybrid organicâ€inorganic multifunctional catalysts based on polydopamineâ€like chemistry. Asian Journal of Organic Chemistry, 0, , .	1.3	2
111	Liquid-Crystalline Fullerodendrimers and Fullero(codendrimers). , 0, , 247-270.		6
112	Polymers Based on Carbon Nanotubes. , 0, , 271-303.		1
113	Polyfullerenes for Organic Photovoltaics. , 0, , 171-187.		1
114	Fullerene-Containing Supramolecular Polymers. , 0, , 189-220.		3
115	Fullerene-Rich Dendrons and Dendrimers. , 0, , 221-245.		1
116	Main-Chain and Side-Chain C60-Polymers. , 0, , 15-42.		1
117	Acrylate and Methacrylate C60-End-Capped Polymers. , 0, , 43-77.		1
118	Semi-Interpenetrating Polymer Networks Involving C60-Polymers. , 0, , 79-95.		0