
Hans Gerd Nothwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1290775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression pattern of cochlear microRNAs in the mammalian auditory hindbrain. Cell and Tissue Research, 2021, 383, 655-666.	2.9	7
2	Structural changes in the extracellular loop 2 of the murine KCC2 potassium chloride cotransporter modulate ion transport. Journal of Biological Chemistry, 2021, 296, 100793.	3.4	5
3	The Lbx1 lineage differentially contributes to inhibitory cell types of the dorsal cochlear nucleus, a cerebellumâ€like structure, and the cerebellum. Journal of Comparative Neurology, 2021, 529, 3032-3045.	1.6	6
4	Loss of miR-183/96 Alters Synaptic Strength via Presynaptic and Postsynaptic Mechanisms at a Central Synapse. Journal of Neuroscience, 2021, 41, 6796-6811.	3.6	9
5	Differential expression of <scp>microRNAs</scp> in the developing avian auditory hindbrain. Journal of Comparative Neurology, 2021, 529, 3477-3496.	1.6	2
6	Staurosporine and NEM mainly impair WNK-SPAK/OSR1 mediated phosphorylation of KCC2 and NKCC1. PLoS ONE, 2020, 15, e0232967.	2.5	14
7	Loss of inner hair cell ribbon synapses and auditory nerve fiber regression in Cldn14 knockout mice. Hearing Research, 2020, 391, 107950.	2.0	0
8	miR-96 is required for normal development of the auditory hindbrain. Human Molecular Genetics, 2018, 27, 860-874.	2.9	31
9	Evolution of Endolymph Secretion and Endolymphatic Potential Generation in the Vertebrate Inner Ear. Brain, Behavior and Evolution, 2018, 92, 1-31.	1.7	29
10	Phosphoregulation of the intracellular termini of K+-Clâ^' cotransporter 2 (KCC2) enables flexible control of its activity. Journal of Biological Chemistry, 2018, 293, 16984-16993.	3.4	22
11	Differences in molecular mechanisms of K+ clearance in the auditory sensory epithelium of birds and mammals. Journal of Experimental Biology, 2017, 220, 2701-2705.	1.7	3
12	Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice. BMC Neuroscience, 2017, 18, 75.	1.9	0
13	Molecular cloning and biochemical characterization of two cation chloride cotransporter subfamily members of Hydra vulgaris. PLoS ONE, 2017, 12, e0179968.	2.5	9
14	Functional Role of Î ³ -Crystallin N in the Auditory Hindbrain. PLoS ONE, 2016, 11, e0161140.	2.5	5
15	Comparative Analysis of Gene Regulatory Network Components in the Auditory Hindbrain of Mice and Chicken. Brain, Behavior and Evolution, 2016, 88, 161-176.	1.7	8
16	Molecular bases of K+ secretory cells in the inner ear: shared and distinct features between birds and mammals. Scientific Reports, 2016, 6, 34203.	3.3	18
17	Evolution of mammalian sound localization circuits: A developmental perspective. Progress in Neurobiology, 2016, 141, 1-24.	5.7	44
18	Differential patterns of histone methylase EHMT2 and its catalyzed histone modifications H3K9me1 and H3K9me2 during maturation of central auditory system. Cell and Tissue Research, 2016, 365, 247-264.	2.9	13

HANS GERD NOTHWANG

#	Article	IF	CITATIONS
19	Neto2-null mice have impaired GABAergic inhibition and are susceptible to seizures. Frontiers in Cellular Neuroscience, 2015, 9, 368.	3.7	25
20	The emerging framework of mammalian auditory hindbrain development. Cell and Tissue Research, 2015, 361, 33-48.	2.9	20
21	The gene regulatory networks underlying formation of the auditory hindbrain. Cellular and Molecular Life Sciences, 2015, 72, 519-535.	5.4	17
22	KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX. Journal of Cell Biology, 2015, 209, 671-686.	5.2	97
23	L-type Calcium Channel Cav1.2 Is Required for Maintenance of Auditory Brainstem Nuclei. Journal of Biological Chemistry, 2015, 290, 23692-23710.	3.4	17
24	KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX. Journal of Experimental Medicine, 2015, 212, 21270IA56.	8.5	0
25	L-Typ-Kalzium-KanÃlæ im Hörsystem. E-Neuroforum, 2014, 20, 250-257.	0.1	0
26	A Novel Regulatory Locus of Phosphorylation in the C Terminus of the Potassium Chloride Cotransporter KCC2 That Interferes with N-Ethylmaleimide or Staurosporine-mediated Activation*♦. Journal of Biological Chemistry, 2014, 289, 18668-18679.	3.4	56
27	Central auditory function of deafness genes. Hearing Research, 2014, 312, 9-20.	2.0	24
28	Evolution of the Cation Chloride Cotransporter Family: Ancient Origins, Gene Losses, and Subfunctionalization through Duplication. Molecular Biology and Evolution, 2014, 31, 434-447.	8.9	54
29	Molecular and evolutionary insights into the structural organization of cation chloride cotransporters. Frontiers in Cellular Neuroscience, 2014, 8, 470.	3.7	43
30	Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum. Journal of Neuroscience Methods, 2013, 213, 153-164.	2.5	7
31	Evolutionary Conservation of Kv3.1 in the Barn OwlTyto alba. Brain, Behavior and Evolution, 2013, 81, 187-193.	1.7	1
32	Time-dependent Gene Expression Analysis of the Developing Superior Olivary Complex. Journal of Biological Chemistry, 2013, 288, 25865-25879.	3.4	32
33	Retrocochlear function of the peripheral deafness gene Cacna1d. Human Molecular Genetics, 2012, 21, 3896-3909.	2.9	45
34	KCC2 transport activity requires the highly conserved L675 in the C-terminal β1 strand. Biochemical and Biophysical Research Communications, 2012, 420, 492-497.	2.1	3
35	Egr2::Cre Mediated Conditional Ablation of Dicer Disrupts Histogenesis of Mammalian Central Auditory Nuclei. PLoS ONE, 2012, 7, e49503.	2.5	20
36	Opposite temperature effect on transport activity of KCC2/KCC4 and N(K)CCs in HEK-293 cells. BMC Research Notes, 2011, 4, 526.	1.4	11

HANS GERD NOTHWANG

#	Article	IF	CITATIONS
37	Ca _v 1.3 Calcium Channels Are Required for Normal Development of the Auditory Brainstem. Journal of Neuroscience, 2011, 31, 8280-8294.	3.6	80
38	Differences in the Large Extracellular Loop between the K+-Clâ^ Cotransporters KCC2 and KCC4. Journal of Biological Chemistry, 2010, 285, 23994-24002.	3.4	36
39	Approaching clinical proteomics: current state and future fields of application in fluid proteomics. Clinical Chemistry and Laboratory Medicine, 2009, 47, 724-44.	2.3	112
40	Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1. Journal of Neurochemistry, 2009, 111, 321-331.	3.9	41
41	CIP1 is an activator of the K+–Clâ~' cotransporter KCC2. Biochemical and Biophysical Research Communications, 2009, 381, 388-392.	2.1	30
42	Subcellular Fractionation of Small Sample Amounts. Springer Protocols, 2009, , 165-170.	0.3	2
43	Enrichment of Brain Plasma Membranes by Affinity Two-Phase Partitioning. Methods in Molecular Biology, 2009, 528, 119-126.	0.9	2
44	Two-Dimensional Separation of Membrane Proteins by 16-BAC-SDS-PAGE. Methods in Molecular Biology, 2009, 528, 269-277.	0.9	12
45	Isolation of Plasma Membranes from the Nervous System by Countercurrent Distribution in Aqueous Polymer Two-Phase Systems. Methods in Molecular Biology, 2009, 564, 335-340.	0.9	1
46	Hypothyroidism impairs chloride homeostasis and onset of inhibitory neurotransmission in developing auditory brainstem and hippocampal neurons. European Journal of Neuroscience, 2008, 28, 2371-2380.	2.6	41
47	Minimal sex differences in gene expression in the rat superior olivary complex. Hearing Research, 2008, 245, 65-72.	2.0	6
48	Neuronale Chloridhomöostase: entwicklungs- und aktivitÃඎabhägige Regulation von Chloridtransportern. E-Neuroforum, 2008, 14, 148-158.	0.1	0
49	Aqueous polymer two-phase systems: Effective tools for plasma membrane proteomics. Proteomics, 2006, 6, 5409-5417.	2.2	96
50	Comparative gene expression analysis reveals a characteristic molecular profile of the superior olivary complex. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 409-423.	2.0	10
51	Neuroproteomics – the tasks lying ahead. Electrophoresis, 2006, 27, 2819-2829.	2.4	41
52	Proteomic Analysis of Brain Plasma Membranes Isolated by Affinity Two-phase Partitioning. Molecular and Cellular Proteomics, 2006, 5, 390-400.	3.8	96
53	Oligomerization of KCC2 Correlates with Development of Inhibitory Neurotransmission. Journal of Neuroscience, 2006, 26, 10407-10419.	3.6	223
54	Developmental pattern of three vesicular glutamate transporters in the rat superior olivary complex. Cell and Tissue Research, 2005, 320, 33-50.	2.9	67

HANS GERD NOTHWANG

#	Article	IF	CITATIONS
55	A subcellular prefractionation protocol for minute amounts of mammalian cell cultures and tissue. Proteomics, 2005, 5, 35-45.	2.2	95
56	Gene expression profiling of the rat superior olivary complex using serial analysis of gene expression. European Journal of Neuroscience, 2004, 20, 3244-3258.	2.6	15
57	Differential expression pattern of chloride transporters NCC, NKCC2, KCC1, KCC3, KCC4, and AE3 in the developing rat auditory brainstem. Cell and Tissue Research, 2003, 312, 155-165.	2.9	44
58	Protein analysis in the rat auditory brainstem by two-dimensional gel electrophoresis and mass spectrometry. Molecular Brain Research, 2003, 116, 59-69.	2.3	11
59	Efficient Cloning of SAGE Tags by Blunt-End Ligation of Polished Concatemers. BioTechniques, 2003, 34, 692-694.	1.8	9
60	Expression and Function of Chloride Transporters during Development of Inhibitory Neurotransmission in the Auditory Brainstem. Journal of Neuroscience, 2003, 23, 4134-4145.	3.6	173
61	Refinement and delineation of the breakpoint regions of a chromosome 1;22 translocation in a patient with Costello syndrome*. American Journal of Medical Genetics Part A, 2002, 109, 234-237.	2.4	9
62	Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nature Genetics, 2001, 27, 108-112.	21.4	442
63	A translocation breakpoint cluster disrupts the newly defined 3' end of the SNURF-SNRPN transcription unit on chromosome 15. Human Molecular Genetics, 2001, 10, 201-210.	2.9	62
64	Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nature Genetics, 2000, 26, 247-250.	21.4	329
65	Molecular Cloning of the Critical Region for Clomerulopathy with Fibronectin Deposits (GFND) and Evaluation of Candidate Genes. Genomics, 2000, 68, 127-135.	2.9	14
66	300 million years of conserved synteny between chicken Z and human chromosome 9. Nature Genetics, 1999, 21, 258-259.	21.4	330
67	Cloning and Characterization of UXT, a Novel Gene in Human Xp11, which Is Widely and Abundantly Expressed in Tumor Tissue. Genomics, 1999, 56, 340-343.	2.9	50
68	Lack of large, homozygous deletions of the nephronophthisis 1 region in Joubert syndrome type B. Pediatric Nephrology, 1998, 12, 16-19.	1.7	29
69	Construction of a Gene Map of the Nephronophthisis Type 1 (NPHP1) Region on Human Chromosome 2q12–q13. Genomics, 1998, 47, 276-285.	2.9	26
70	Identification of a Novel Ran Binding Protein 2 Related Gene (RANBP2L1) and Detection of a Gene Cluster on Human Chromosome 2q11–q12. Genomics, 1998, 47, 383-392.	2.9	36
71	Molecular Cloning of the Interleukin-1 Gene Cluster: Construction of an Integrated YAC/PAC Contig and a Partial Transcriptional Map in the Region of Chromosome 2q13. Genomics, 1997, 41, 370-378.	2.9	45
72	A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nature Genetics, 1997, 17, 149-153.	21.4	327

5

#	Article	IF	CITATIONS
73	Molecular genetic identification of families with juvenile nephronophthisis type 1: Rate of progression to renal failure. Kidney International, 1997, 51, 261-269.	5.2	88
74	cDNA cloning and interferon gamma down-regulation of proteasomal subunits X and Y. Science, 1994, 265, 1231-1234.	12.6	194
75	Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. Molecular Genetics and Genomics, 1994, 245, 769-780.	2.4	51