Harald Gj \tilde{A} ,s \tilde{A} ¦ter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1290310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recruitment variability of fish stocks in the Barents Sea: Spatial and temporal variation in 0-group fish length of six commercial species during recent decades of warming (1980–2017). Progress in Oceanography, 2022, 206, 102845.	3.2	4
2	Size-fractioned zooplankton biomass in the Barents Sea: Spatial patterns and temporal variations during three decades of warming and strong fluctuations of the capelin stock (1989–2020). Progress in Oceanography, 2022, 206, 102852.	3.2	8
3	Harp seal body condition and trophic interactions with prey in Norwegian high Arctic waters in early autumn. Progress in Oceanography, 2021, 191, 102498.	3.2	5
4	Distribution of rorquals and Atlantic cod in relation to their prey in the Norwegian high Arctic. Polar Biology, 2021, 44, 761-782.	1.2	4
5	A logistic function to track time-dependent fish population dynamics. Fisheries Research, 2021, 236, 105840.	1.7	6
6	A deep scattering layer under the North Pole pack ice. Progress in Oceanography, 2021, 194, 102560.	3.2	15
7	Population dynamic regulators in an empirical predator-prey system. Journal of Theoretical Biology, 2021, 527, 110814.	1.7	7
8	Spatial and temporal patterns of capelin (Mallotus villosus) spawning sites in the Barents Sea. Fisheries Research, 2021, 244, 106117.	1.7	3
9	Polar cod egg and larval drift patterns in the Svalbard archipelago. Polar Biology, 2020, 43, 1029-1042.	1.2	15
10	Productive detours – Atlantic water inflow and acoustic backscatter in the major troughs along the Svalbard shelf. Progress in Oceanography, 2020, 188, 102447.	3.2	12
11	Sea ice, temperature, and prey effects on annual variations in mean lengths of a key Arctic fish, Boreogadus saida, in the Barents Sea. ICES Journal of Marine Science, 2020, 77, 1796-1805.	2.5	11
12	Key processes regulating the early life history of Barents Sea polar cod. Polar Biology, 2020, 43, 1015-1027.	1.2	20
13	Study of the Arctic mesopelagic layer with vessel and profiling multifrequency acoustics. Progress in Oceanography, 2020, 182, 102260.	3.2	8
14	Acoustic scattering layers reveal a faunal connection across the Fram Strait. Progress in Oceanography, 2020, 185, 102348.	3.2	13
15	Diel vertical movements determine spatial interactions between cod, pelagic fish and krill on an Arctic shelf bank. Marine Ecology - Progress Series, 2020, 638, 13-23.	1.9	5
16	Polar cod in jeopardy under the retreating Arctic sea ice. Communications Biology, 2019, 2, 407.	4.4	46
17	From single species surveys towards monitoring of the Barents Sea ecosystem. Progress in Oceanography, 2018, 166, 4-14.	3.2	70
18	Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: A review of possibilities and constraints. Fisheries Research, 2017, 188, 38-57.	1.7	130

Harald GjÃ,sæter

#	Article	IF	CITATIONS
19	Spatial and temporal changes in the Barents Sea pelagic compartment during the recent warming. Progress in Oceanography, 2017, 151, 206-226.	3.2	95
20	Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biology, 2017, 40, 2105-2111.	1.2	62
21	The major threats to Atlantic salmon in Norway. ICES Journal of Marine Science, 2017, 74, 1496-1513.	2.5	187
22	Evidence of Diel Vertical Migration of Mesopelagic Sound-Scattering Organisms in the Arctic. Frontiers in Marine Science, 2017, 4, .	2.5	48
23	High Latitude Epipelagic and Mesopelagic Scattering Layers—A Reference for Future Arctic Ecosystem Change. Frontiers in Marine Science, 2017, 4, .	2.5	51
24	Norwegian fisheries in the Svalbard zone since 1980. Regulations, profitability and warming waters affect landings. Polar Science, 2016, 10, 312-322.	1.2	58
25	Predation on early life stages is decisive for year-class strength in the Barents Sea capelin (<i>Mallotus villosus</i>) stock. ICES Journal of Marine Science, 2016, 73, 182-195.	2.5	34
26	A review of the battle for food in the Barents Sea: cod vs. marine mammals. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	60
27	A retrospective evaluation of the Barents Sea capelin management advice. Marine Biology Research, 2015, 11, 135-143.	0.7	22
28	Sources of uncertainties in cod distribution models. Nature Climate Change, 2015, 5, 788-789.	18.8	15
29	Synergies between climate and management for Atlantic cod fisheries at high latitudes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3478-3483.	7.1	173
30	Who eats whom in the Barents Sea: a food web topology from plankton to whales. Ecology, 2014, 95, 1430-1430.	3.2	40
31	Reference point based management of Norwegian Atlantic salmon populations. Environmental Conservation, 2013, 40, 356-366.	1.3	36
32	A comparison of recent changes in distribution of capelin (Mallotus villosus) in the Barents Sea, around Iceland and in the Northwest Atlantic. Progress in Oceanography, 2013, 114, 64-83.	3.2	58
33	Recruitment in the Barents Sea, Icelandic, and eastern Newfoundland/Labrador capelin (Mallotus) Tj ETQq1 1 0.7	′84314 rg 3.2	BT /Overlock
34	Changes in the relationship between sea temperature and recruitment of cod, haddock and herring in the Barents Sea. Marine Biology Research, 2013, 9, 895-907.	0.7	36
35	Polar cod (<i>Boreogadus saida</i>) and capelin (<i>Mallotus villosus</i>) as key species in marine food webs of the Arctic and the Barents Sea. Marine Biology Research, 2013, 9, 878-894.	0.7	249
36	Marine living resources of the Barents Sea – Ecosystem understanding and monitoring in a climate change perspective. Marine Biology Research, 2013, 9, 932-947.	0.7	45

Harald GjÃ,sæter

#	Article	IF	CITATIONS
37	Responses in spatial distribution of Barents Sea capelin to changes in stock size, ocean temperature and ice cover. Marine Biology Research, 2013, 9, 867-877.	0.7	50
38	Temporal stability of the maturation schedule of capelin <i>Mallotus villosus</i> in the Barents Sea. Aquatic Living Resources, 2012, 25, 151-161.	1.2	9
39	Changes in Barents Sea ecosystem state, 1970–2009: climate fluctuations, human impact, and trophic interactions. ICES Journal of Marine Science, 2012, 69, 880-889.	2.5	121
40	Cod, haddock, saithe, herring, and capelin in the Barents Sea and adjacent waters: a review of the biological value of the area. ICES Journal of Marine Science, 2010, 67, 87-101.	2.5	166
41	Trophic interactions affecting a key ecosystem component: a multistage analysis of the recruitment of the Barents Sea capelin (Mallotus villosus). Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1363-1375.	1.4	30
42	Fifty years of Norwegian-Russian collaboration in marine research. Marine Biology Research, 2009, 5, 1-3.	0.7	3
43	A comparison of biological trends from four marine ecosystems: Synchronies, differences, and commonalities. Progress in Oceanography, 2009, 81, 29-46.	3.2	42
44	A comparison of community and trophic structure in five marine ecosystems based on energy budgets and system metrics. Progress in Oceanography, 2009, 81, 47-62.	3.2	67
45	A cross-ecosystem comparison of spatial and temporal patterns of covariation in the recruitment of functionally analogous fish stocks. Progress in Oceanography, 2009, 81, 63-92.	3.2	28
46	Ecosystem effects of the three capelin stock collapses in the Barents Sea. Marine Biology Research, 2009, 5, 40-53.	0.7	107
47	The Norwegian ecosystem-based management plan for the Barents Sea. ICES Journal of Marine Science, 2007, 64, 599-602.	2.5	77
48	SPATIAL ANATOMY OF SPECIES SURVIVAL: EFFECTS OF PREDATION AND CLIMATE-DRIVEN ENVIRONMENTAL VARIABILITY. Ecology, 2007, 88, 635-646.	3.2	64
49	Food web dynamics affect Northeast Arctic cod recruitment. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 661-669.	2.6	81
50	DENSITY-DEPENDENT MIGRATORY WAVES IN THE MARINE PELAGIC ECOSYSTEM. Ecology, 2006, 87, 2915-2924.	3.2	40
51	Studying spatial and trophic interactions between capelin and cod using individual-based modelling. ICES Journal of Marine Science, 2004, 61, 1201-1213.	2.5	35
52	Possible vessel avoidance behaviour of capelin in a feeding area and on a spawning ground. Fisheries Research, 2004, 69, 251-261.	1.7	24
53	Growth of Barents Sea capelin (Mallotus villosus) in relation to zooplankton abundance. ICES Journal of Marine Science, 2002, 59, 959-967.	2.5	63
54	Assessment methodology for Barents Sea capelin, Mallotus villosus (Müller). ICES Journal of Marine Science, 2002, 59, 1086-1095.	2.5	56

Harald GjÃ,sæter

#	Article	IF	CITATIONS
55	Predation by cod (Gadus morhua) on capelin (Mallotus villosus) in the Barents Sea: implications for capelin stock assessment. Fisheries Research, 2001, 53, 197-209.	1.7	35
56	A neural network approach for predicting stock abundance of the Barents Sea capelin. Sarsia, 1999, 84, 457-464.	0.5	12
57	The acoustic method as used in the abundance estimation of capelin (Mallotus villosus Müller) and herring (Clupea harengus Linné) in the Barents Sea. Fisheries Research, 1998, 34, 27-37.	1.7	32
58	Effects of the presence of herring (Clupea harengus) on the stock-recruitment relationship of Barents Sea capelin (Mallotus villosus). Fisheries Research, 1998, 38, 57-71.	1.7	90
59	The population biology and exploitation of capelin (<i>Mallotus villosus</i>) in the barents sea. Sarsia, 1998, 83, 453-496.	0.5	214
60	A comparison between abundance estimates of the Barents Sea capelin (Mallotus villosusMüller) at the larval, O-group and 1-group stage, for the year classes 1981–1994. ICES Journal of Marine Science, 1998, 55, 95-101.	2.5	9
61	The Barents sea capelin stock 1972–1997. A synthesis of results from acoustic surveys. Sarsia, 1998, 83, 497-510.	0.5	41
62	Diet and food availability for north-east Atlantic minke whales (Balaenoptera acutorostrata), during the summer of 1992. ICES Journal of Marine Science, 1995, 52, 77-86.	2.5	30
63	Pelagic Fish and the Ecological Impact of the Modern Fishing Industry in the Barents Sea. Arctic, 1995, 48, .	0.4	51
64	A method for estimating the consumption of capelin by cod in the Barents Sea. ICES Journal of Marine Science, 1994, 51, 273-280.	2.5	29
65	Growth of polar cod, Boreogadus saida (Lepechin), in the Barents Sea. ICES Journal of Marine Science, 1994, 51, 115-120.	2.5	16
66	Impact of grazing from capelin (Mallotus villosus) on zooplankton: a case study in the northern Barents Sea in August 1985. Polar Research, 1991, 10, 371-388.	1.6	59
67	Growth of the Barents Sea capelin,Mallotus villosus, in relation to climate. Environmental Biology of Fishes, 1987, 20, 293-300.	1.0	38
68	Ecosystem-Based Management of Fish Species in the Barents Sea. , 0, , 333-352.		10